. Mater, , vol.18, pp.572-576, 2006.

J. Gilot, I. Barbu, M. M. Wienk, and R. A. Janssen, The Use of ZnO as Optical Spacer in Polymer Solar Cells: Theoretical and Experimental Study, Appl. Phys. Lett, p.113520, 2007.

J. Li, Y. Liu, Z. Zhu, G. Zhang, T. Zou et al., A Full-Sunlight-Driven Photocatalyst with Super Long-Persistent Energy Storage Ability. Sci. Rep, 2013.

G. Wang, Y. Yang, D. Han, and Y. Li, Oxygen defective metal oxides for energy conversion and storage, Nano Today, vol.13, pp.23-39, 2017.

. D. Ielmini, Resistive switching memories based on metal oxides: mechanisms, reliability and scaling, Semicond. Sci. Technol, p.63002, 2016.

Y. Sun, C. J. Takacs, S. R. Cowan, J. H. Seo, X. Gong et al., Air-Stable Bulk Heterojunction Polymer Solar Cells Using MoOx as the Anode Interfacial Layer, Adv. Mater, vol.23, pp.2226-2230, 2011.

S. R. Cowan, P. Schulz, A. J. Giordano, A. Garcia, B. A. Macleod et al., Chemically Controlled Reversible and Irreversible Extraction Barriers Via Stable Interface Modification of Zinc Oxide Electron Collection Layer in Polycarbazole-Based Organic Solar Cells, Adv. Funct. Mater, vol.24, pp.4671-4680, 2014.

H. O. Seo, S. Park, W. H. Shim, K. Kim, K. H. Lee et al., Ultrathin TiO 2 Films on ZnO Electron-Collecting Layers of Inverted Organic Solar Cell, J. Phys. Chem. C, vol.115, pp.21517-21520, 2011.

M. T. Pope, I. Heteropoly, M. T. Oxometalates-;-pope, and A. Müller, Polyoxometalate Chemistry: An Old Field with New Dimensions in Several Disciplines, Angew. Chem. Int. Ed. Engl, vol.30, issue.16, pp.34-48, 1983.

W. G. Klemperer, Metal oxide chemistry in solution: the early transition metal polyoxoanions, Science, vol.228, pp.533-541, 1985.

M. Sadakane and E. Steckhan, Electrochemical Properties of Polyoxometalates as Electrocatalysts, Chem. Rev, vol.98, pp.219-238, 1998.

T. Ueda, Electrochemistry of Polyoxometalates: From Fundamental Aspects to Applications, vol.5, pp.823-838, 2018.

E. Papaconstantinou, Photochemistry of Polyoxometallates of Molybdenum and Tungsten and/or Vanadium, Chem. Soc. Rev, vol.18, pp.1-31, 1989.

P. Gómez-romero, Polyoxometalates as Photoelectrochemical Models for Quantum-Sized Colloidal Semiconducting Oxides. Solid State Ion, pp.243-248, 1997.

T. Yamase, Photo-and Electrochromism of Polyoxometalates and Related Materials, Chem. Rev, vol.98, pp.307-326, 1998.

C. Busche, L. Vilà-nadal, J. Yan, H. N. Miras, D. Long et al., Design and Fabrication of Memory Devices Based on Nanoscale Polyoxometalate Clusters, Nature, vol.515, pp.545-549, 2014.

X. Chen, Y. Zhou, V. A. Roy, and S. Han, Evolutionary Metal Oxide Clusters for Novel Applications: Toward High-Density Data Storage in Nonvolatile Memories, Adv. Mater, 2018.

B. Hu, C. Wang, J. Wang, J. Gao, K. Wang et al., Inorganic-Organic Hybrid Polymer with Multiple Redox for High-Density Data Storage, Chem. Sci, vol.5, pp.3404-3408, 2014.

S. Herrmann, N. Aydemir, F. Nägele, D. Fantauzzi, T. Jacob et al., Tungsten Polyoxometalate Molecules as Active Nodes for Dynamic Carrier Exchange in Hybrid Molecular/Semiconductor Capacitors, Adv. Funct. Mater, p.143703, 2014.

L. C. Palilis, M. Vasilopoulou, D. G. Georgiadou, and P. Argitis, A water soluble inorganic molecular oxide as a novel efficient electron injection layer for hybridlight-emittingdiodes (HyLEDs), Org. Lett, vol.11, pp.887-894, 2010.

M. Tountas, Y. Topal, M. Kus, M. Ersöz, M. Fakis et al., Water-Soluble Lacunary Polyoxometalates with Excellent Electron Mobilities and Hole Blocking Capabilities for High efficiency Fluorescentand Phosphorescent Organic Light Emitting Diodes, Adv. Funct. Mater, vol.26, pp.2655-2665, 2016.

S. Ohisa, S. Kagami, Y. Pu, T. Chiba, and J. Kido, A Solution Processed Heteropolyacid Containing MoO 3 Units as a Hole-Injection Material for Highly Stable Organic Light-Emitting Devices, ACS Appl. Mater. Interfaces, vol.8, pp.20946-20954, 2016.

M. Vasilopoulou, A. M. Douvas, D. G. Georgiadou, L. C. Palilis, S. Kennou et al., The Influence of Hydrogenation and Oxygen Vacancies on Molybdenum Oxides Work Function and Gap States for Application in Organic Optoelectronics, J. Am. Chem. Soc, vol.134, pp.16178-16187, 2012.

A. Soultati, A. M. Douvas, D. G. Georgiadou, L. C. Palilis, T. Bein et al., Solution-Processed Hydrogen Molybdenum Bronzes as Highly Conductive Anode Interlayers in Efficient Organic Photovoltaics, Adv. Energy Mater, vol.2, pp.1738-1749, 2014.

M. Vasilopoulou, A. Soultati, P. Argitis, T. Stergiopoulos, and D. Davazoglou, Fast Recovery of the High Work Function of Tungsten and Molybdenum Oxides via Microwave Exposure for Efficient Organic Photovoltaics, J. Phys. Chem. Lett, vol.5, pp.1871-1879, 2014.

L. C. Palilis, M. Vasilopoulou, A. M. Douvas, D. G. Georgiadou, S. Kennou et al., Solution Processable Tungsten Polyoxometalate as Highly Effective Cathode Interlayer for Improved Efficiency and Stability Polymer Solar Cells, Sol. Energy Mater. Sol. Cells, vol.114, pp.205-213, 2013.

X. Jia, L. Shen, M. Yao, Y. Liu, W. Yu et al., Highly Efficient Low-Bandgap Polymer Solar Cells with Solution-Processed and Annealing-free Phosphomolybdic Acid as Hole-Transport Layers, ACS Appl. Mater. Interfaces, vol.7, pp.5367-5372, 2015.

Y. Zhu, Z. Yuan, W. Cui, Z. Wu, Q. Sun et al., A cost-effective commercial soluble oxide cluster for highly efficient and stable organic solar cells, J. Mater. Chem. A, vol.2, pp.1436-1442, 2014.

M. Vasilopoulou, E. Polydorou, A. M. Douvas, L. C. Palilis, S. Kennou et al., Old Metal Oxide Clusters in New Applications: Spontaneous Reduction of Keggin and Dawson Polyoxometalate Layers by a Metallic Electrode for Improving Efficiency in Organic Optoelectronics, Energy Environ. Sci, vol.8, pp.6844-6856, 2015.

M. Tountas, Y. Topal, E. Polydorou, A. Soultati, A. Verykios et al., Low Work Function Lacunary Polyoxometalates as Electron Transport Interlayers for Inverted Polymer Solar Cells of Improved Efficiency and Stability, ACS Appl. Mater. Interfaces, vol.9, pp.22773-22787, 2017.

M. Tountas, Y. Topal, A. Verykios, A. Soultati, A. Kaltzoglou et al., A silanol-functionalized polyoxometalate with excellent electron transfer mediating behavior to ZnO and TiO2 cathode interlayers for highly efficient and extremely stable polymer solar cells, J. Mater. Chem. C, vol.6, pp.1459-1469, 2018.

M. Alaaeddine, Q. Zhu, D. Fichou, G. Izzet, J. E. Rault et al., Enhancement of Photovoltaic Efficiency by Insertion of a Polyoxometalate Layer at the Anode of an Organic Solar Cell, Inorg Chem Front, vol.1, pp.682-688, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01156577

Y. Sakai, S. Ohta, Y. Shintoyo, S. Yoshida, Y. Taguchi et al., Encapsulation of Anion/Cation in the Central Cavity of Tetrameric Polyoxometalate Composed of Four Tritanium(IV)-Substituted ?-Dawson Subunits, Initiated by Protonation/Deprotonation of the Bridging Oxygens on the Intramolecular Surface, Inorg. Chem, vol.50, pp.6575-6583, 2011.

C. Kato, S. Nishihara, R. Tsunashima, Y. Tatewaki, S. Okada et al., Quick and selective synthesis of Li 6, 28H2O soluble in various organic solvents, vol.42, pp.11363-11366, 2013.

V. R. Albertini, B. Paci, and A. Generosi, Energy Dispersive X-Ray Reflectometry as a Unique Laboratory Tool for Investigating Morphological Properties of Layered Systems and Devices, J. Phys. Appl. Phys, p.461, 2006.

B. Fleury, M. Billon, F. Duclairoir, L. Dubois, A. Fanton et al., Electrostatic immobilization of polyoxometallates on silicon: X-ray Photoelectron Spectroscopy and electrochemical studies, Thin Solid Films, vol.519, pp.3732-3738, 2011.

M. Filowitz, R. K. Ho, W. G. Klemperer, W. Shum, X. López et al., Electronic Properties of Polyoxometalates: Electron and Proton Affinity of Mixed-Addenda Keggin and Wells?Dawson Anions, J. Am. Chem. Soc, vol.18, issue.50, pp.12574-12582, 1979.

M. Pascual-borràs, X. López, A. Rodríguez-fortea, R. J. Errington, and J. Poblet, 17O NMR Chemical Shifts in Oxometalates: From the Simplest Monometallic Species to Mixed-Metal Polyoxometalates, Chem. Sci, vol.5, pp.2031-2042, 2014.

J. Yang, F. Bussolotti, S. Kera, and N. Ueno, Origin and Role of Gap States in Organic Semiconductor Studied by UPS: As the Nature of Organic Molecular Crystals, J. Phys. Appl. Phys, vol.50, pp.423002-53, 2017.

K. Eguchi, Y. Toyozawa, N. Yamazoe, and T. Seiyama, An Infrared Study on the Reduction Processes of Dodecamolybdophosphates, J. Catal, vol.83, pp.32-41, 1983.

I. Efremenko and R. Neumann, Computational Insight into the Initial Steps of the Mars-van Krevelen Mechanism: Electron Transfer and Surface Defects in the Reduction of Polyoxometalates, J. Am. Chem. Soc, vol.134, pp.20669-20680, 2012.

A. M. Khenkin, I. Efremenko, J. M. Martin, and R. Neumann, The Kinetics and Mechanism of Oxidation of Reduced Phosphovanadomolybdates by Molecular Oxygen: Theory and Experiment in Concert, Phys. Chem. Chem. Phys, vol.20, pp.7579-7587, 2018.

G. Baronetti, L. Briand, U. Sedran, and H. Thomas, Heteropolyacid-Based Catalysis. Dawson Acid for MTBE Synthesis in Gas Phase, Appl. Catal. Gen, vol.172, pp.265-272, 1998.

J. E. Sambeth, G. T. Baronetti, and H. J. Thomas, A Theoretical-Experimental Study of Wells-Dawson Acid: An Explanation of Their Catalytic Activity, J. Mol. Catal. Chem, vol.191, pp.35-43, 2003.

C. Comuzzi, G. Dolcetti, A. Trovarelli, F. Cavani, F. Trifirò et al., The Solid-State Rearrangement of the Wells-Dawson K6-P2W18O62·10H2O to a Stable Keggin-Type Heteropolyanion Phase: A Catalyst for the Selective Oxidation of Isobutane to Isobutene, Catal. Lett, vol.36, pp.75-79, 1996.

L. G. Parratt, Surface Studies of Solids by Total Reflection of X-Rays, Phys. Rev, vol.95, pp.359-369, 1954.
DOI : 10.1103/physrev.95.359