J. Colinge, FinFETs and Other Multi-Gate Transistors, 2008.

M. C. Mcalpine, R. S. Friedman, S. Jin, K. Lin, W. U. Wang et al., High-Performance Nanowire Electronics and Photonics on Glass and Plastic Substrates, Nano Lett, vol.3, issue.11, pp.1531-1535, 2003.

J. Goldberger, A. I. Hochbaum, R. Fan, and P. Yang, Silicon Vertically Integrated Nanowire Field Effect Transistors, Nano Lett, vol.6, issue.5, pp.973-977, 2006.

X. Liu, Y. Long, L. Liao, X. Duan, and Z. Fan, Large-Scale Integration of Semiconductor Nanowires for High-Performance Flexible Electronics, ACS Nano, vol.6, issue.3, pp.1888-1900, 2012.

O. Gunawan, L. Sekaric, A. Majumdar, M. Rooks, J. Appenzeller et al., Measurement of Carrier Mobility in Silicon Nanowires, Nano Lett, vol.8, issue.6, pp.1566-1571, 2008.

J. Chen, T. Saraya, K. Miyaji, K. Shimizu, and T. Hiramoto, Electron Mobility in Silicon Gate-All-Around [100]-and [110]-Directed Nanowire MetalOxideSemiconductor Field-Effect Transistor on (100)Oriented Silicon-on-Insulator Substrate Extracted by Improved Split CapacitanceVoltage Method, Jpn. J. Appl. Phys, vol.48, issue.1R, p.11205, 2009.

J. Chen, T. Saraya, and T. Hiramoto, Experimental Investigations of Electron Mobility in Silicon Nanowire nMOSFETs on (110) Silicon-onInsulator, IEEE Electron Device Lett, vol.30, issue.11, pp.1203-1205, 2009.

L. Sekaric, O. Gunawan, A. Majumdar, X. H. Liu, D. Weinstein et al., Size-dependent modulation of carrier mobility in topdown fabricated silicon nanowires, Appl. Phys. Lett, vol.95, issue.2, p.23113, 2009.

P. Hashemi, J. T. Teherani, and J. L. Hoyt, Investigation of hole mobility in gate-all-around Si nanowire p-MOSFETs with high-k/metalgate: Effects of hydrogen thermal annealing and nanowire shape, IEDM Tech. Dig, 2010.

K. Mao, T. Saraya, and T. Hiramoto, Effects of Side Surface Roughness on Carrier Mobility in Tri-Gate Single Silicon Nanowire MetalOxideSemiconductor Field-Effect Transistors, Jpn. J. Appl. Phys, vol.52, issue.4S, pp.4-11, 2013.

R. Coquand, S. Barraud, M. Cass, P. Leroux, C. Vizioz et al., Scaling of high-/metal-gate TriGate SOI nanowire transistors down to 10 nm width, Solid-State Electronics, vol.88, pp.32-36, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01002171

S. Jin, M. V. Fischetti, and T. Tang, Modeling of electron mobility in gated silicon nanowires at room temperature: Surface roughness scattering, dielectric screening, and band nonparabolicity, J. Appl. Phys, vol.102, issue.8, p.83715, 2007.

M. Lenzi, A. Gnudi, S. Reggiani, E. Gnani, M. Rudan et al., Semiclassical transport in silicon nanowire FETs including surface roughness, J. Comput. Electronics, vol.7, issue.3, pp.355-358, 2008.

E. B. Ramayya, D. Vasileska, S. M. Goodnick, and I. Knezevic, Electron transport in silicon nanowires: The role of acoustic phonon confinement and surface roughness scattering, J. Appl. Phys, vol.104, issue.6, p.63711, 2008.

A. Cresti, M. G. Pala, S. Poli, M. Mouis, and G. Ghibaudo, A Comparative Study of Surface-Roughness-Induced Variability in Silicon Nanowire and Double-Gate FETs, IEEE Transactions on Electron Devices, vol.58, issue.8, pp.2274-2281, 2011.

S. Kim, M. Luisier, A. Paul, T. B. Boykin, and G. Klimeck, Full ThreeDimensional Quantum Transport Simulation of Atomistic Interface Roughness in Silicon Nanowire FETs, IEEE Trans. Electron Devices, vol.58, issue.5, pp.1371-1380, 2011.

M. Aldegunde, A. Martinez, and J. R. Barker, Study of individual phonon scattering mechanisms and the validity of Matthiessen's rule in a gate-all-around silicon nanowire transistor, J. Appl. Phys, vol.113, issue.1, p.14501, 2013.

H. E. Jung and M. Shin, Surface-Roughness-Limited Mean Free Path in Silicon Nanowire Field Effect Transistors, IEEE Trans. Electron Devices, vol.60, issue.6, pp.1861-1866, 2013.

R. Rhyner and M. Luisier, Atomistic modeling of coupled electronphonon transport in nanowire transistors, Phys. Rev. B, vol.89, p.235311, 2014.

H. Ryu, A multi-subband Monte Carlo study on dominance of scattering mechanisms over carrier transport in sub-10-nm Si nanowire FETs, Nanoscale Res. Lett, vol.11, issue.1, pp.1-9, 2016.

I. M. Tienda-luna, F. G. Ruiz, A. Godoy, B. Biel, and F. Gmiz, Surface roughness scattering model for arbitrarily oriented silicon nanowires, J. Appl. Phys, vol.110, issue.8, p.84514, 2011.

R. Granzner, V. M. Polyakov, C. Schippel, and F. Schwierz, Empirical Model for the Effective Electron Mobility in Silicon Nanowires, IEEE Trans. Electron Devices, vol.61, issue.11, pp.3601-3607, 2014.

A. K. Buin, A. Verma, and M. P. Anantram, Carrier-phonon interaction in small cross-sectional silicon nanowires, J. Appl. Phys, vol.104, issue.5, p.53716, 2008.

Y. M. Niquet, C. Delerue, D. Rideau, and B. Videau, Fully Atomistic Simulations of Phonon-Limited Mobility of Electrons and Holes in 001?, 110?, and 111-Oriented Si Nanowires, IEEE Trans. Electron Devices, vol.59, issue.5, pp.1480-1487, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00787798

Y. Niquet, C. Delerue, and C. Krzeminski, Effects of Strain on the Carrier Mobility in Silicon Nanowires, Nano Letters, vol.12, issue.7, pp.3545-3550, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00787472

M. D. Michielis, D. Esseni, P. Palestri, and L. Selmi, Semiclassical Modeling of Quasi-Ballistic Hole Transport in Nanoscale pMOSFETs Based on a Multi-Subband Monte Carlo Approach, IEEE Trans. Electron Devices, vol.56, issue.9, pp.2081-2091, 2009.

N. Neophytou, O. Baumgartner, Z. Stanojevic, and H. Kosina, Band structure and mobility variations in p-type silicon nanowires under electrostatic gate field, Solid-State Electronics, vol.90, pp.44-50, 2013.

N. Neophytou and H. Kosina, Hole mobility increase in ultra-narrow si channels under strong (110) surface confinement, Appl. Phys. Lett, vol.99, issue.9, p.92110, 2011.

R. Kotlyar, T. D. Linton, R. Rios, M. D. Giles, S. M. Cea et al., Does the low hole transport mass in 110 and 111 Si nanowires lead to mobility enhancements at high field and stress: A self-consistent tight-binding study, J. Appl. Phys, vol.111, issue.12, p.123718, 2012.

M. P. Anantram, M. S. Lundstrom, and D. E. Nikonov, Modeling of nanoscale devices, Proceedings of the IEEE, vol.96, pp.1511-1550, 2008.

S. M. Goodnick, D. K. Ferry, C. W. Wilmsen, Z. Liliental, D. Fathy et al., Surface roughness at the Si(100)-SiO 2 interface, Phys. Rev. B, vol.32, pp.8171-8186, 1985.

Y. Niquet, V. Nguyen, F. Triozon, I. Duchemin, O. Nier et al., Quantum calculations of the carrier mobility: Methodology, Matthiessen's rule, and comparison with semi-classical approaches, J. Appl. Phys, vol.115, issue.5, p.54512, 2014.

C. Jacoboni and L. Reggiani, The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials, Rev. Mod. Phys, vol.55, pp.645-705, 1983.

V. H. Nguyen, Y. M. Niquet, F. Triozon, I. Duchemin, O. Nier et al., Quantum Modeling of the Carrier Mobility in FDSOI Devices, IEEE Trans. Electron Devices, vol.61, issue.9, pp.3096-3102, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02137701

L. Bourdet, J. Li, J. Pelloux-prayer, F. Triozon, M. Casse et al., Contact resistances in trigate and FinFET devices in a non-equilibrium Green's functions approach, J. Appl. Phys, vol.119, issue.8, p.84503, 2016.

P. Packan, S. Cea, H. Deshpande, T. Ghani, M. Giles et al., High performance Hi-K + metal gate strain enhanced transistors on (110) silicon, 2008 IEEE International Electron Devices Meeting, pp.1-4, 2008.

F. Gamiz and M. V. Fischetti, Monte Carlo simulation of doublegate silicon-on-insulator inversion layers: The role of volume inversion, Journal of Applied Physics, vol.89, issue.10, pp.5478-5487, 2001.

. , Strong confinement indeed promotes light hole bands in [110] pNWFETs. The increase of hole velocities can overcome the enhancement of scattering. Therefore, the mobility might be non monotonous with carrier density and/or NW size depending on the strength of SR

F. Gamiz, J. B. Roldan, J. E. Carceller, and P. Cartujo, Monte Carlo simulation of remote-Coulomb-scattering-limited mobility in metaloxidesemiconductor transistors, Appl. Phys. Lett, vol.82, issue.19, pp.3251-3253, 2003.

P. Toniutti, P. Palestri, D. Esseni, F. Driussi, M. D. Michielis et al., On the origin of the mobility reduction in nand p-metaloxidesemiconductor field effect transistors with hafniumbased/metal gate stacks, J. Appl. Phys, vol.112, issue.3, p.34502, 2012.

A. Pirovano, A. L. Lacaita, G. Ghidini, and G. Tallarida, On the correlation between surface roughness and inversion layer mobility in Si-MOSFETs, IEEE Electron Device Lett, vol.21, issue.1, pp.34-36, 2000.

S. Barraud, M. Casse, L. Gaben, Y. Pelloux-prayer, Z. Zeng et al., Carrier mobility in Silicon, Strained-Si and StrainedSi 0.7 Ge 0.3 Nanowire Transistors