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Abstract—Many Internet of Things applications are deployed
over shared ISM (Industrial, Scientific, Medical) radiofrequency
spectrum bands. With the recent development of Low Power
Wide Area (LPWA) wireless networks, the probability of in-
terference and frame collisions has significantly increased. In
this context, real-time interference monitoring is essential to
provide precious information for network planning, base-station
installation site selection, congested area detection, etc. This work
presents a novel, low complexity interference detector for mobile
LPWA nodes that is designed using a set of experimental data
acquisitions. A first classifier is used to detect the presence
of interference and shows a detection accuracy of 94%. If
interference is detected, a second classifier is used to classify the
interference’s relative strength into ten classes with a correct
classification rate up to 97%. The detector also provides an
estimation of the interference’s duration with an average relative
error of 2% for medium to strong interference levels.

Index Terms—Internet of Things (IoT), Low Power Wide Area
(LPWA), Interference Detection, Classification, Channel State
Information, Channel Analysis Signal, Interference Presence
Indicator, Ultra-Low Power Transceivers.

I. INTRODUCTION

The massive deployment of Internet of Things (IoT) appli-

cations requires an efficient use of the scarce radiofrequency

(RF) spectrum. Current IoT wireless communication protocols

are deployed either over cellular networks, using e.g. the NB-

IoT protocol, or in shared ISM (Industrial, Scientific, Medical)

frequency bands. While cellular systems offer spectrum avail-

ability guarantees, spectrum sharing in ISM bands is only en-

forced through coexistence rules. Historically, ISM bands were

used for short-range communication systems with inherently

low mutual disturbance probability. The recent development of

Low Power Wide Area (LPWA) wireless networks deployed

over these same ISM bands has significantly increased the

probability of interference for two reasons: First, the order of

magnitude greater range increases the probability of co-located

networks. This is true for both same-type and for different-

type co-located LPWA communication systems (e.g. networks

such as LoRa, Sigfox, IEEE 802.15.4g/k, MYOTY, and so

on, that are all deployed in the same ISM bands). Second,

the increase in range implies that extremely low payload bit-

rates must be used. Thus, the resulting very long frame on-air

times increase the probability of collisions [1]. For example,

recent research has shown that LoRa networks based on an

ALOHA medium access protocol quickly become interference

limited when node density increases, thus necessitating new

interference-related performance metrics [2].

The present work focuses on the design of a low complexity,

real-time interference detector for LPWA transceivers. Our

objective is that, every time the transceiver correctly receives

a frame, the detector simultaneously outputs information on

the presence or absence of interference, and, if applicable,

information concerning the interference’s relative strength and

duration. This interference-related information gathered by

the wireless node can be used in many ways. An obvious

application is network planning and selection of base station

installation sites. Indeed, since the information is gathered

by the nodes themselves, the network installer will dispose

of very precise information concerning congested areas and

be able to optimize the base station placement accordingly.

Alternatively, interference-related information can be used by

adaptive transmission protocols that aim to optimize the physi-

cal layer signalling rate in view of either improving throughput

or saving energy when favourable RF propagation conditions

have been detected. Detailed per-frame interference-related

information can be exploited to fine-tune channel adaptation

strategies.

This paper focuses on the design of an information-rich

interference detector for ultra-low power transceivers typi-

cally employed in LPWA IoT applications. To comply with

the extremely tight energy budget of these applications, our

detection mechanism avoids the transmission of dedicated

frames or symbols and avoids burdening the wireless node’s

processing capacity with algorithms that require high computa-

tional complexity. In addition, to ease the development of new

MAC or network-level adaptive communication protocols, the

information delivered by the detector is clear, simple to use,

precise, and reflects the instantaneous propagation conditions.

To address this challenge, our strategy is to exploit channel-

related information contained within the received signal itself.

To this end, a channel analysis signal (CAS) is defined in

the digital base-band (DBB) processing part of the wireless

receiver. The CAS is then processed to calculate two features

per frame and which are used as inputs to classifiers. For

each correctly received frame, the proposed detector is able to

detect the presence or absence of interference, and if required



provide an indication of the relative strength and duration of

the interference. While the work described below is based

on the LECIM FSK physical layer of the IEEE 802.15.4-

2015 standard, the approach can easily be generalized to other

LPWA communication standards.

The contributions of this paper are:

• A low complexity single-frame interference presence

indicator (IPI) for LPWA transceivers based on a mono-

feature classifier and with 94% accuracy;

• A 10-level interference relative-strength classifier with an

accuracy up to 97% built upon two minimal complexity

features;

• An interference duration estimator;

• An experimentation-based classifier design methodology.

This paper is structured as follows: relative work is dis-

cussed in Section II, followed by a presentation of the experi-

mental platform and data collection in Section III. The design

methodology for our interference detector and interference

strength estimator is proposed in Sections IV and V, respec-

tively. Finally, experimental results are discussed in section

VI.

II. RELATED WORK

Interference detection mechanisms have been developed

and employed in the field of wireless communications for

many different applications and in many differing contexts.

In particular, blind interference detection techniques have

been extensively investigated for cognitive radios (CR) where

transceivers must compete for spectrum use while avoiding the

interference caused by other communication systems sharing

the same frequency band. For example, a pilot-aided interfer-

ence detection method was proposed in [3] to allow robust

orthogonal frequency division multiplexing (OFDM) signal

detection in the presence of in-band interference. A pilot-

free interference estimation technique was proposed in [4] for

similar OFDM-based cognitive radios. More generally, many

different spectrum sensing techniques have been developed in

the cognitive radio context, for example using hidden Markov

modeling [5].

Interference detection techniques have also been proposed

for ISM radio communications where many different propa-

gation schemes share the same spectrum. For example, for the

2.4 GHz ISM band, an approach to detect and minimize the

impact of interference caused by Bluetooth packets to IEEE

802.11g OFDM-based transmissions is proposed in [6]. The

authors exploit the OFDM demodulation algorithm to extract

useful information from the symbol magnitude for each sub-

carrier obtained after the demodulation FFT. In [7] and [8],

the authors propose a PHY-independent interference detection

mechanism based on the detection of abrupt changes in a BER

estimate calculated for each received symbol. While very effi-

cient, this approach requires that a large number of per-symbol

confidence data, gathered within the DBB, be transferred to

the upper-layer protocol layers for processing. Alternatively,

the authors in [9] propose a very simple interference detection

mechanism based on the analysis of the distribution of coded

bit errors within a frame. Unfortunately, this approach implies

that frame data be necessarily encoded and limits interference

detection to frames received at low SNR, since bit errors must

absolutely be present.

Finally, in [10], demodulated chip error patterns of 2.4

GHz IEEE 802.15.4 transmissions are analyzed to infer the

wireless link conditions, both to uncover the reasons for frame

loss and also to determine whether interference is present,

even when no frame is dropped. The extensive experiments

performed by the authors focus on the transitional region of

a wireless link which is characterized by highly volatile link

conditions and thus in which received signal power is barely

above the receiver’s sensitivity. While a channel classification

heuristic is proposed by the authors, little effort is committed

to the explanation of observed error patterns with respect to

the channel conditions. Compared to the above related work,

our work focuses on LPWA transmission schemes which,

with respect to OFDM signalling schemes, are generally of

lower complexity. Consequently, we focus on low complexity

interference detection mechanisms.

III. EXPERIMENTAL PLATFORM AND DATA COLLECTION

Since commercial off the shelf (COTS) devices do not

allow access to DBB algorithms, a software defined radio is

necessary for experimentation. The aim of the experiments is

to gather realistic data for channel analysis, IPI choice, and

Fig. 1. IEEE 802.15.4-2015 LECIM FSK PHY digital baseband (DBB) receiver algorithm with CAS, DDSL and ADA computation.



data-set collection for classifier training and validation. After

the presentation of the SDR-based experimental platform, a

brief description of the IEEE 802.15.4-2015 LECIM FSK

PHY standard is given, and the labelled data-set collection

procedure is described.

A. SDR-Based Experimental Platform

The SDR platform is composed of three universal software

radio peripherals (USRP) located in a 5 m × 4 m room. The

three USRP are programmed to support the LECIM (Low

Energy Critical Infrastructure Monitoring) FSK PHY of the

IEEE 802.15.42015 standard [11]. The first USRP is used

as transmitter (Tx), the second as interference source (Ix)

and the last as receiver (Rx). The USRP are N210 models

[12] from Ettus Research with WBX [40 MHz - 2200 MHz]

daughter-board. All experiments employ a carrier within the

869.3-869.4 MHz ISM band which is not limited by duty

cycle in France if transmissions are below 10 mW. Attenuators

are inserted between each emitting USRP output SMA port

and the half-wave dipole antenna which allows us to limit

the transmission range to approximately two meters which is

necessary for leading controlled experiments. Each USRP is an

RF front-end which performs up/down frequency conversion,

analog filtering and DA/AD conversion. The USRPs are driven

by GnuRadio through a Gbit Ethernet connection to a PC. The

transmission and reception DBB algorithms are implemented

in MATLAB which provides/receives complex baseband data

at a sample rate of 300 kHz to/from GnuRadio.

B. IEEE 802.15.4-2015 LECIM FSK PHY

Since FSK-based modulations are extremely common in

ultra-low power communication systems, the experiments de-

scribed in this work are based on the IEEE 802.15.4-2015

LECIM FSK PHY which extends the range of conventional

IEEE 802.15.4 physical layers through spread spectrum tech-

niques [13]. This physical layer employs the GMSK modula-

tion at 37.5 kchip/s with optional direct-sequence modulation

spreading factors of 2, 4, 8 or 16. The frames generated

for the experiments are composed of a 4-byte preamble, 3-

byte start of frame delimiter (SFD), 2-byte header, 1250-

byte payload and 2-byte cyclic redundancy check (CRC)

code. The 2-byte CRC is based on the generator polynomial

G(x) = x16+x15+x2+1. Convolutional 1/2 rate forward error

code with constraint length K = 7, optional in the standard,

is used in all of our experiments along with a spreading factor

of 4. Including coding and frame synchronization overheads,

the resulting frames have an on-air time of 2.15 seconds.

A digital baseband receiver able to detect FSK-modulated

frames was designed and is presented in Fig. 1. Indeed, with

A[k] defined as the complex output of the channel filter (FIR2),

it can be shown that x[k] = ℑ(A[k]×A∗[k−1]) is a good ap-

proximation of the instantaneous frequency. Synchronization

and SFD detection is handled by blocks in blue which perform

a correlation with the known preamble sequence. These blocks

calculate the optimal decimation moment thus allowing the

sample stream to be decimated by a factor 8. Demodulation

is performed by yellow blocks while green blocks compute

the channel analysis signal (CAS) as well as the features

used by our interference detector (DDSL and ADA) which

are described below.

C. Labelled Data Collection

The Tx power is chosen such that the received signal is

approximately 15 dB above the Rx sensitivity. This relatively

high SNR level is typical of real-world deployments since

it allows for a comfortable fading margin. Labelled data-

sets are produced by two experiments. In the first one, 300

frames are acquired in an undisturbed RF environment and

labelled accordingly. In the second experiment, an interference

environment is generated using Ix as an interference source.

The interference is an IEEE 802.15.4-2015 LECIM FSK PHY

signal emitted in the same frequency band as that of Tx. The

emission duration of Ix is randomly selected in the range

[30; 1700] ms. To account for variable interference levels, ten

interference environment data-sets are collected, each obtained

using a different baseband signal amplitude ‘a’ applied to the

samples transmitted by Ix. Values of a are selected from 0.1
to 1 with a step of 0.1 in order to cover a 20 dB dynamic

range for received interference power. Thus, values of a close

to 0.1 and 1 respectively correspond to low and high levels

of interference. The Ix USRP gain is configured such that,

when a = 1, frames received by Rx contain bit errors

which are corrected by the forward error correction decoding

process. In this configuration, the measured signal to co-

channel interference ratio (CIR) is approximately 4 dB, which

is consistent with the expected sensitivity of an FSK-based

spread-spectrum receiver. In all of these experiments, only

CRC-valid frames were analyzed and collected for feeding

the classifier training and evaluation steps. For each value of

a, a set of 100 frames was acquired to which was assigned the

label ‘disturbed’ as well as the label ‘l’, with l = 10×a. Thus

a total of 1000 frames was collected in this second experiment.

IV. INTERFERENCE DETECTOR DESIGN METHODOLOGY

In this section, the proposed channel analysis signal (CAS)

and interference presence indicator (IPI) are presented. Then,

the methodology for designing the interference detector and

interference duration estimator is detailed.

A. Channel Analysis Signal (CAS)

In [7], [10] and [8], the receiver’s digital baseband (DBB)

is instrumented to compute channel analysis signals (CAS) for

channel diagnostics. Similarly, the CAS proposed in this work

is extracted directly from the receiver’s DBB. In our case,

the CAS corresponds to the (averaged) absolute value of the

input signal of the soft de-spreading block, x[k]. The CAS is

thus proportional to the probability that the received symbol

is correct. More formally, the CAS is defined as:

CASk =
1

win

win−1
∑

j=0

|x[k − j]|. (1)
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Fig. 2. Channel Analysis Signal (CAS) with an ‘undisturbed’ part (UCAS)
in blue and an ‘interference’ part (ICAS) in red. µCAS is the mean value
of the entire CAS.

In order to smooth the signal |x[k]| and to highlight the

interference footprint, a moving average (MA) over a com-

putation window of win samples is used. The choice of win
must be compatible with the shortest detectable interference

duration. For the given 37.5 kHz decimated sample rate, a

value of win = 1000, corresponding to Twin = 26.6 ms,

is selected. Finally, we define CAS = [CAS1, ..., CASN ] as

the channel analysis signal, where N is the total number of

samples in the frame. Fig. 2 shows an example of the CAS

calculated for a frame received in the presence of interference.

In this figure, we can easily recognize the temporal footprint

of the disturbance corresponding to the presence of a strong

interference. The computation of the CAS signal only requires

a modulus operation and a moving average filter allowing

this approach to be easily generalized to all FSK-based IoT

standards (e.g. Sigfox, Bluetooth). Other signalling schemes

can similarly be addressed by reusing the soft demodulator

input signal of the corresponding DBB receiver.

B. Interference Presence Indicator (IPI)

Our aim is to find a single-value, low complexity IPI that is

able to accurately extract the interference footprint information

from the CAS. To this end, we propose to use the DDSL which

measures the Difference between the averaged Disturbance

and Signal Levels. The DDSL summarizes into one numerical

value the strength footprint of the interference (disturbance

caused by the emission of Ix used as interferer). Let µCAS be

the mean value of the CAS over the frame. UCASk is the set

of CAS values such that CASk > µCAS and, correspondingly,
ICASk is the set of CAS values such that CASk ≤ µCAS

(cf. Fig. 2). DDSL is computed as (2) with M and P the

number of samples respectively contained in the sets UCASk

and ICASk, with M + P = N .

DDSL =
1

M

M
∑

k=1

UCASk −
1

P

P
∑

k=1

ICASk (2)

C. Mono-Feature Classifier Based Detector

The DDSL is used to classify each frame into two classes:

‘undisturbed’ and ‘disturbed’, with a detection threshold, λ.

The ‘disturbed’ class is selected when DDSL is higher than

λ. The value of λ is learned using a training data set from

an empirical ROC curve. The ROC curve displays the true

positive rate as a function of the false positive rate for all

possible values of λ. A true positive is defined as a frame with

interference correctly classified as ‘disturbed’. A false positive

is defined as an undisturbed frame wrongly classified as

‘disturbed’. The performance of an ideal detector is determined

by a 100% TP and a 0% FP, corresponding to the point

{FPR(λ), TPR(λ)}={0,1}. The optimum value of λ is found

by choosing the point on the ROC curve with the minimum

distance from the ideal point (0,1). The minimizing equation

is described by (3).

λopt = argmin
λ

{

[

FPR(λ)2 + (1− TPR(λ))2
]1/2

}

(3)

D. Interference Duration Estimator

Once a frame is detected as ‘disturbed’, the duration of

the interference can be calculated from the CAS signal. The

estimated interference duration τ̂ is equal to the number of

samples contained in the ICASk set, P , divided by the

decimated sample rate (Fs,d). τ̂ is computed by (4).

τ̂ =
P

Fs,d
(4)

Alternatively, an estimation of the relative interference du-

ration, defined as P/N , could also be calculated. Depending

on how the interference detector data is exploited (e.g. net-

work planning or adaptive protocol design), one or the other

information might be more useful.

V. INTERFERENCE STRENGTH ESTIMATOR

In this section, each frame previously classified as ‘dis-

turbed’ is further classified into one of ten classes, C =
1, 2, ..., 10, corresponding to the previously defined labels

l = 1, 2, ..., 10 related to the interference strength.

A. Average of the Disturbance Area

While only DDSL is needed for the interference detector,

the 10-level classification requires the use of an additional

feature, the average of the distance area (ADA), to perform

at its best. ADA gathers additional details concerning the

temporal footprint of the interference. ADA is defined as the

area between the ICASk and the µCAS curves (cf. Fig. 2)

divided by the number of times the average, µCAS , is in-

tersected by the CASk signal. The computation of ADA is

described by (6). The calculation of ADA requires only a

few mathematical operations since 1
P

∑P
k=1

ICASk and µCAS

have been previously computed. Also, the comparisons used

previously to separate the ICASk and UCASk sets can be

simultaneously used to compute the denominator of (6).

Sk = sgn(CASk − µCAS) (5)

ADA =
2P (µCAS − 1

P

∑P
k=1

ICASk)
∑N

k=2 | Sk − Sk−1 |
(6)



B. 10-Level Interference Classification

The ten-level interference classifier uses ten multi-

dimensional centroids. Each frame i is represented by a set of

2 features fi = [DDSLi, ADAi]. In the feature space, each

class C is represented by its centroid and dispersion. The cen-

troid is defined as µC = [DDSLµC ,
ADAµC ] corresponding to

the mean values of DDSL and ADA for each class. The disper-

sion of each class is represented by VC = [DDSLσ2
C ,

ADAσ2
C ],

the variance values of DDSL and ADA. The values µC and

VC are learned for each class using its corresponding learning

data set. For a test frame fi, the Mahalanobis squared distance

between fi and the centroid of class C, Di,C , is calculated for

each class using (7). The covariance matrix of each class is

considered to be diagonal.

Di,C = (fi − µC)(diag(VC))
−1(fi − µC)

T (7)

Ci = argmin
C

{Di,C} (8)

The class assigned to fi, Ci where C ∈ N
[1,10], is the class

whose Di,C is the smallest of the ten computed. Note that, for

each class, the computation of (7) requires only 2 subtractions,

multiplications and divisions and one sum.

C. Classifier Performance

To evaluate the performance of this classifier, a correct

classification rate can be computed for different requirement

levels. The γ-correct classification rate, R±γ , is given by (9),

counting as correct any frame classified into the γ adjacent

classes. In (9), [...] are the Iverson brackets, [B] is defined to

be 1 if B is true, and 0 if it is false and NT is the number of

frames contained within the test set.

R±γ =
1

NT

NT
∑

i=1

[| Ci − li |≤ γ] (9)

VI. RESULTS

A. Disturbed versus Undisturbed Classifier

A learning set made of 150 ‘undisturbed’ frames and

150 ‘disturbed’ (i.e., ‘interference’) frames randomly chosen

among the 1000 samples labelled as ‘interference’ (cf. sec-

tion III-C) is created. This set is used to build the ROC curve

displayed in Fig. 3. Using (3), the optimum operating point

(FPR=0.04, TPR=0.82) is found with λopt = 3.4×10−3. Fig. 4

shows clearly that it is possible to use DDSL to discriminate

‘disturbed’ frames from ‘undisturbed’ ones, with λopt as a

good boundary. The presence of some error points in the

DDSL distribution is explained by the fact that the ROC curve

never reaches the ideal point (0,1) meaning that the classifier

is not flawless. Next, classifier performance is evaluated from

a test set consisting of 300 labelled frames (150 frames per

class) different from those contained in the learning set. The

detector satisfies a correct detection rate of 94%.
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Fig. 3. ROC curve for classifying ‘disturbed’ versus ‘undisturbed’ frames
with λ as the varying threshold parameter using the DDSL feature.
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Fig. 4. Representation of the DDSL for the labelled input learning set with
the optimum selected threshold λopt.

B. Interference Duration Estimator

To validate and compute the interference duration estimator

performance, an additional 400 frames are collected, this time

with controlled interference duration. In order to generate a

correct validation data-set, frames transmitted by Ix are set to

have on-air times of 0.4 s separated by 0.4 s pauses while Tx
transmits 2 second frames separated by 2 second pauses. In

this way, we are certain that each acquired frame is impacted

by at least 0.8 seconds of interference. The extraction of the
ICASk set is slightly modified to include only samples corre-

sponding to a complete interference signal. To emulate various

levels of interference, randomly generated values of a between

0.2 and 1 are applied to Ix. The interference duration estimator

accuracy is evaluated computing the root mean square error

(RMSE) and the average relative error (δαr) between the

estimated duration value τ̂ and the preset value τ . Fig. 5

shows the evolution of the RMSE and the average relative error

δαr for different values of the interference’s complex signal

amplitude a (cf. section III-C). The proposed interference

duration estimator is very accurate for a > 0.5, corresponding

to medium to strong interference with a RMSE < 0.044 s

and a δαr < 2%. Even if the precision of the estimator is

less accurate for lower-level interference, the estimator can

still provide valuable information that can be used by an

adaptive protocol that attempts to improve communication link

by modifying frame length.

C. Interference Strength Classifier

The interference strength classifier is trained using a training

set of 500 samples (50 samples per class). Next, the classifier
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Fig. 6. Confusion matrix represented in gray scale computed from the test
set classification.

performance is evaluated using a validation set consisting of

the remaining 500 samples. The performance is summarized

by the confusion matrix displayed in Fig. 6. Each row of

the matrix shows the classifier output (in percentage) for the

labelled set identified on the vertical scale. Thus, the gray-scale

number located at (i,j) is the percentage of samples classified

as belonging to class i while belonging to set j. Correct

classifications are presented in the diagonal while classification

errors are represented by results outside of the diagonal. As

expected, Fig. 6 shows a greater number of classification errors

for classes 1, 2, 3 and 5 while, for the rest of the classes,

the classification results are distributed in the diagonal area

reflecting a good classification performance. Three γ-correct

classification rates are computed: R±0 = 42%, R±1 = 74%
and R±2 = 97%. This last value means that the classifier

practically never assigns the frame into a class further than 2

classes away from the correct one. This shows its ability to

accurately evaluate the level of the interference strength. Most

importantly, the classifier never confuses a low interference

frame with a strong interference frame.

VII. CONCLUSION

In this paper, we present an information-rich interference

detector able to detect the presence of a simultaneous trans-

mission in a wireless channel while estimating its duration

and relative strength. Since the detector provides this data

for each correctly received frame, it is a valuable tool for

monitoring the RF propagation conditions in real time. The

low complexity detector is built upon a channel analysis

signal (CAS) extracted directly from the receiver DBB, two

novel feature extractors (DDSL and ADA) and two classifiers.

Low computational complexity is an important requirement

for all elements of the detector. The first classifier is able to

detect the presence of interference with 94% accuracy. The

second is able to discriminate between low, medium and strong

interference levels with 97% accuracy. A reliable estimation

of the interference duration, with an average 2% relative error

when the level of interference is medium to strong is also

proposed. The approach presented in this work can be easily

generalized to other LPWAN standards. Future work will in-

clude experimentation with other types of interference sources

(e.g. LoRa, Sigfox) to validate the classifier performance in

generalized scenarios.
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