H. L. Zeng, C. Gao, and D. Y. Yan, Poly(epsilon-caprolactone)functionalized carbon nanotubes and their biodegradation properties, Adv. Func. Mater, vol.16, issue.6, pp.812-818, 2006.

J. Zhong, L. Song, J. Meng, B. Gao, W. S. Chu et al., Bio-nano interaction of proteins adsorbed on single-walled carbon nanotubes, Carbon, vol.47, issue.4, pp.967-973, 2009.

N. Behabtu, C. C. Young, D. E. Tsentalovich, O. Kleinerman, X. Wang et al., Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity, Science, vol.339, issue.6116, p.61, 2013.

Q. Cao, S. J. Han, G. S. Tulevski, Y. Zhu, D. D. Lu et al., Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics, Nat. Nanotechnol, vol.8, issue.3, pp.180-186, 2013.

D. Volder, M. F. Tawfick, S. H. Baughman, R. H. Hart, and A. J. , Carbon nanotubes: present and future commercial applications, Science, vol.339, issue.6119, pp.535-539, 2013.

M. M. Shulaker, G. Hills, N. Patil, H. Wei, H. Y. Chen et al., Carbon nanotube computer, Nature, vol.501, issue.7468, p.526, 2013.

K. Wang, Q. H. Meng, Y. J. Zhang, Z. X. Wei, and M. H. Miao, High-performance two-ply yarn supercapacitors based on carbon nanotubes and polyaniline nanowire arrays, Adv. Mater, vol.25, issue.10, pp.1494-1498, 2013.

S. Manzetti, Remediation technologies for oil-drilling activities in the Arctic: oil-spill containment and remediation in open water, Environ Technol Rev, vol.3, issue.1, pp.49-60, 2014.

P. Serp, M. Corrias, and P. Kalck, Carbon nanotubes and nanofibers in catalysis, Appl Catal Gen, vol.253, issue.2, pp.549-549, 2003.

T. Matsumoto, T. Komatsu, K. Arai, T. Yamazaki, M. Kijima et al., Reduction of Pt usage in fuel cell electrocatalysts with carbon nanotube electrodes, Chem Commun, vol.1, p.1, 2004.

K. Bradley, J. Cumings, A. Star, J. C. Gabriel, and G. Gruner, Influence of mobile ions on nanotube based FET devices, Nano Lett, vol.3, issue.5, pp.639-641, 2003.

K. Bradley, J. C. Gabriel, M. Briman, A. Star, and G. Gruner, Charge transfer from ammonia physisorbed on nanotubes, Phys. Rev. Lett, vol.91, issue.21, p.218301, 2003.

K. Bradley, J. C. Gabriel, A. Star, and G. Gruner, Shortchannel effects in contact-passivated nanotube chemical sensors, Appl. Phys. Lett, vol.83, issue.18, pp.3821-3823, 2003.

K. A. Mahmoud, S. Hrapovic, and J. H. Luong, Picomolar detection of protease using peptide/single walled carbon nanotube/ gold nanoparticle-modified electrode, ACS Nano, vol.2, issue.5, pp.1051-1057, 2008.

K. A. Mahmoud and J. H. Luong, Impedance method for detecting HIV-1 protease and screening for its inhibitors using ferrocenepeptide conjugate/Au nanoparticle/single-walled carbon nanotube modified electrode, Anal. Chem, vol.80, issue.18, pp.7056-7062, 2008.

C. M. Aguirre, P. L. Levesque, M. Paillet, F. Lapointe, B. C. Stantoine et al., The role of the oxygen/ water redox couple in suppressing electron conduction in fieldeffect transistors, Adv. Mater, vol.21, issue.30, p.3087, 2009.

Y. Tao, J. He, X. Zhang, T. Y. Man, and M. Chan, Full-band quantum transport based simulation for carbon nanotube field effect transistor from chirality to device performance, Mol. Simul, vol.34, issue.1, pp.73-80, 2008.

K. Maehashi, T. Katsura, K. Kerman, Y. Takamura, K. Matsumoto et al., Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors, Anal. Chem, vol.79, issue.2, pp.782-787, 2007.

Y. Fang, J. F. Hou, and Y. Fang, Flexible bio-interfaced nanoelectronics, J. Mater. Chem. C, vol.2, issue.7, pp.1178-1183, 2014.

B. Pan and B. S. Xing, Adsorption mechanisms of organic chemicals on carbon nanotubes, Environ. Sci. Technol, vol.42, issue.24, pp.9005-9013, 2008.

K. Yang, W. Wu, Q. Jing, and L. Zhu, Aqueous adsorption of aniline, phenol, and their substitutes by multi-walled carbon nanotubes, Environ. Sci. Technol, vol.42, issue.21, pp.7931-7936, 2008.

S. Manzetti, O. Andersen, C. Garcia, and E. Campos, Molecular simulation of carbon nanotubes as sorptive materials: sorption effects towards retene, perylene and cholesterol to 100 degrees celsius and above, Mol. Simul, vol.42, issue.14, p.12, 2016.

S. T. Yang, J. X. Li, D. D. Shao, J. Hu, and X. K. Wang, Adsorption of Ni(II) on oxidized multi-walled carbon nanotubes: Effect of contact time, pH, foreign ions and PAA, J. Hazard. Mater, vol.166, issue.1, pp.109-116, 2009.

V. K. Gupta, S. Agarwal, and T. A. Saleh, Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes, Water Res, vol.45, issue.6, pp.2207-2212, 2011.

X. M. Ren, C. L. Chen, M. Nagatsu, and X. K. Wang, Carbon nanotubes as adsorbents in environmental pollution management: a review, Chem. Eng. J, vol.170, issue.2-3, pp.395-410, 2011.

X. M. Ren, D. D. Shao, S. T. Yang, J. Hu, G. D. Sheng et al., Comparative study of Pb(II) sorption on XC-72 carbon and multi-walled carbon nanotubes from aqueous solutions, Chem. Eng. J, vol.170, issue.1, pp.170-177, 2011.

X. L. Wang, J. L. Lu, and B. S. Xing, Sorption of organic contaminants by carbon nanotubes: influence of adsorbed organic matter, Environ. Sci. Technol, vol.42, issue.9, pp.3207-3212, 2008.

J. G. Yu, X. H. Zhao, H. Yang, X. H. Chen, Q. Yang et al., Aqueous adsorption and removal of organic contaminants by carbon nanotubes. Sci. Total Environ, vol.482, pp.241-251, 2014.

J. L. Gong, B. Wang, G. M. Zeng, C. P. Yang, C. G. Niu et al., Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent, J. Hazard. Mater, vol.164, issue.2-3, pp.1517-1522, 2009.

P. C. Ma, S. Y. Mo, B. Z. Tang, and J. K. Kim, Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites, Carbon, vol.48, issue.6, pp.1824-1834, 2010.

P. C. Ma, N. A. Siddiqui, G. Marom, and J. K. Kim, Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review, Compos. Part Appl. Sci. Manuf, vol.41, issue.10, pp.1345-1367, 2010.

N. G. Sahoo, S. Rana, J. W. Cho, L. Li, and S. H. Chan, Polymer nanocomposites based on functionalized carbon nanotubes, Prog. Polym. Sci, vol.35, issue.7, pp.837-867, 2010.

S. J. Choi, T. H. Kwon, H. Im, D. I. Moon, D. J. Baek et al., A polydimethylsiloxane (PDMS) Sponge for the selective absorption of oil from water, ACS Appl. Mater. Interfaces, vol.3, issue.12, pp.4552-4556, 2011.

H. L. Zhang, Electrospun poly (lactic-co-glycolic acid)/multiwalled carbon nanotubes composite scaffolds for guided bone tissue regeneration, J. Bioact. Comp. Polym, vol.26, issue.4, pp.347-362, 2011.

B. Vigolo, A. Penicaud, C. Coulon, C. Sauder, R. Pailler et al., Macroscopic fibers and ribbons of oriented carbon nanotubes, Science, vol.290, issue.5495, pp.1331-1334, 2000.

S. Polizu, O. Savadogo, P. Poulin, and L. Yahia, Applications of carbon nanotubes-based biomaterials in biomedical nanotechnology, J. Nanosci. Nanotechnol, vol.6, issue.7, pp.1883-1904, 2006.

B. R. Goldsmith, J. G. Coroneus, V. R. Khalap, A. A. Kane, G. A. Weiss et al., Conductance-controlled point functionalization of single-walled carbon nanotubes, Science, vol.315, issue.5808, pp.77-81, 2007.

V. R. Khalap, T. Sheps, A. A. Kane, and P. G. Collins, Hydrogen sensing and sensitivity of palladium-decorated single-walled carbon nanotubes with defects, Nano Lett, vol.10, issue.3, pp.896-901, 2010.

R. Olive-monllau, M. J. Esplandiu, J. Bartroli, M. Baeza, and F. Cespedes, Strategies for the optimization of carbon nanotube/ polymer ratio in composite materials: applications as voltammetric sensors, Sens Actuators B Chem, vol.146, issue.1, pp.353-360, 2010.

H. S. Wong and S. Salahuddin, Memory leads the way to better computing, Nat. Nanotechnol, vol.10, issue.3, pp.191-194, 2015.

Y. Matsuo, K. Tahara, and E. Nakamura, Theoretical studies on structures and aromaticity of finite-length armchair carbon nanotubes, Org. Lett, vol.5, issue.18, pp.3181-3184, 2003.
DOI : 10.1021/ol0301330

URL : https://pubs.acs.org/doi/pdf/10.1021/ol0301330

D. H. Lin and B. S. Xing, Adsorption of phenolic compounds by carbon nanotubes: role of aromaticity and substitution of hydroxyl groups, Environ. Sci. Technol, vol.42, issue.19, pp.7254-7259, 2008.

J. Li, Y. J. Lu, Q. Ye, M. Cinke, J. Han et al., Carbon nanotube sensors for gas and organic vapor detection, Nano Lett, vol.3, issue.7, pp.929-933, 2003.
DOI : 10.1021/nl034220x

D. Y. Cai, M. Song, and C. X. Xu, Highly conductive carbon-nanotube/graphite-oxide hybrid films, Adv. Mater, vol.20, issue.9, p.1706, 2008.
DOI : 10.1002/adma.200702602

F. H. Gojny, J. Nastalczyk, Z. Roslaniec, and K. Schulte, Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites, Chem. Phys. Lett, vol.370, issue.5-6, pp.187-195, 2003.
DOI : 10.1016/s0009-2614(03)00187-8

M. Theodore, M. Hosur, J. Thomas, and S. Jeelani, Influence of functionalization on properties of MWCNT-epoxy nanocomposites, Mater. Sci. Eng. Struct. Mater. Prop. Microstruct. Proces, vol.528, issue.3, pp.1192-1200, 2011.

S. Manzetti and O. Andersen, A molecular dynamics study of nanoparticle-formation from bioethanol-gasoline blend emissions, Fuel, vol.183, pp.55-63, 2016.
DOI : 10.1016/j.fuel.2016.06.049

S. Manzetti, Chemical and electronic properties of polycyclic aromatic hydrocarbons: a review, Handbook of Polycyclic Aromatic Hydrocarbons: Chemistry, Occurrence and Health Issues, pp.423-435, 2012.

S. Gotovac, H. Honda, Y. Hattori, K. Takahashi, H. Kanoh et al., Effect of nanoscale curvature of single-walled carbon nanotubes on adsorption of polycyclic aromatic hydrocarbons, Nano Lett, vol.7, issue.3, pp.583-587, 2007.

C. M. Chang and Y. L. Liu, Functionalization of multi-walled carbon nanotubes with furan and maleimide compounds through DielsAlder cycloaddition, Carbon, vol.47, issue.13, pp.3041-3049, 2009.
DOI : 10.1016/j.carbon.2009.06.058

J. M. Bonard, T. Stora, J. P. Salvetat, F. Maier, T. Stockli et al., Purification and size-selection of carbon nanotubes, Adv. Mater, vol.9, issue.10, p.827, 1997.
DOI : 10.1002/adma.19970091014

S. Bandow, A. M. Rao, K. A. Williams, A. Thess, R. E. Smalley et al., Purification of single-wall carbon nanotubes by microfiltration, J. Phys. Chem. B, vol.101, issue.44, pp.8839-8842, 1997.
DOI : 10.1021/jp972026r

M. F. Islam, E. Rojas, D. M. Bergey, A. T. Johnson, and A. G. Yodh, High weight fraction surfactant solubilization of single-wall carbon nanotubes in water, Nano Lett, vol.3, issue.2, pp.269-273, 2003.

L. Q. Jiang, L. Gao, and J. Sun, Production of aqueous colloidal dispersions of carbon nanotubes, J. Colloid Interface Sci, vol.260, issue.1, pp.176-181, 2003.

A. L. Ndiaye, C. Varenne, P. Bonnet, E. Petit, L. Spinelle et al., Elaboration of SWNTs-based gas sensors using dispersion techniques: evaluating the role of the surfactant and its influence on the sensor response, Sens. Actuators B Chem, vol.162, issue.1, pp.95-101, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00687921

S. M. Fatemi and M. Foroutan, Recent developments concerning the dispersion of carbon nanotubes in surfactant/polymer systems by MD simulation, J. Nanostruct. Chem, vol.6, issue.1, pp.29-40, 2016.

S. H. Park and J. Bae, Tailoring environment friendly carbon nanostructures by surfactant mediated interfacial engineering, J. Ind. Eng. Chem, vol.30, pp.1-9, 2015.
DOI : 10.1016/j.jiec.2015.05.005

H. Wang, Dispersing carbon nanotubes using surfactants, Curr. Opin. Colloid Interface Sci, vol.14, issue.5, pp.364-371, 2009.
DOI : 10.1016/j.cocis.2009.06.004

J. Hilding, E. A. Grulke, Z. G. Zhang, and F. Lockwood, Dispersion of carbon nanotubes in liquids, J. Dispers. Sci. Technol, vol.24, issue.1, pp.1-41, 2003.

K. L. Lu, R. M. Lago, Y. K. Chen, M. L. Green, P. J. Harris et al., Mechanical damage of carbon nanotubes by ultrasound, Carbon, vol.34, issue.6, pp.814-816, 1996.
DOI : 10.1016/0008-6223(96)89470-x

A. Jedrzejewska, R. J. Kalenczuk, and E. Mijowska, Systematic study on synthesis and purification of double-walled carbon nanotubes synthesized via CVD, Mater. Sci. Poland, vol.29, issue.4, pp.292-298, 2011.

P. Lukaszczuk, E. Mijowska, and R. Kalenczuk, Selective oxidation of metallic single-walled carbon nanotubes, Chem. Pap, vol.67, issue.9, pp.1250-1254, 2013.

S. L. Liang, G. F. Li, and R. Tian, Multi-walled carbon nanotubes functionalized with a ultrahigh fraction of carboxyl and hydroxyl groups by ultrasound-assisted oxidation, J. Mater. Sci, vol.51, issue.7, pp.3513-3524, 2016.

S. Bibi, T. Yasin, M. Nawaz, and G. J. Price, Comparative study of the modification of multi-wall carbon nanotubes by gamma irradiation and sonochemically assisted acid etching, Mater. Chem. Phys, vol.207, pp.23-29, 2018.

G. J. Price, M. Nawaz, T. Yasin, and S. Bibi, Sonochemical modification of carbon nanotubes for enhanced nanocomposite performance, Ultrason. Sonochem, vol.40, pp.123-130, 2018.

D. A. Heller, R. M. Mayrhofer, S. Baik, Y. V. Grinkova, M. L. Usrey et al., Concomitant length and diameter separation of single-walled carbon nanotubes, J. Am. Chem. Soc, vol.126, issue.44, pp.14567-14573, 2004.

P. Liu and T. M. Wang, Ultrasonic-assisted chemical oxidative cutting of multiwalled carbon nanotubes with ammonium persulfate in neutral media, Appl. Phys. Mater. Sci. Process, vol.97, issue.4, pp.771-775, 2009.

Y. Q. Liu, L. Gao, J. Sun, S. Zheng, L. Q. Jiang et al., A multi-step strategy for cutting and purification of single-walled carbon nanotubes, Carbon, vol.45, issue.10, pp.1972-1978, 2007.

J. H. Luong, S. Hrapovic, Y. L. Liu, D. Q. Yang, E. Sacher et al., Oxidation, deformation, and destruction of carbon nanotubes in aqueous ceric sulfate, J. Phys. Chem. B, vol.109, issue.4, pp.1400-1407, 2005.

H. J. Park, M. Park, J. Y. Chang, and H. Lee, The effect of pretreatment methods on morphology and size distribution of multi-walled carbon nanotubes, Nanotechnology, vol.19, issue.33, p.335702, 2008.

K. B. Shelimov, R. O. Esenaliev, A. G. Rinzler, C. B. Huffman, and R. E. Smalley, Purification of single-wall carbon nanotubes by ultrasonically assisted filtration, Chem. Phys. Lett, vol.282, issue.5-6, pp.1265-1272, 1998.

M. V. Shuba, A. G. Paddubskaya, P. P. Kuzhir, S. A. Maksimenko, V. K. Ksenevich et al., Soft cutting of single-wall carbon nanotubes by low temperature ultrasonication in a mixture of sulfuric and nitric acids, Nanotechnology, vol.23, issue.49, p.495714, 2012.

Y. Wang, L. Gao, J. Sun, Y. Q. Liu, S. Zheng et al., An integrated route for purification, cutting and dispersion of single-walled carbon nanotubes, Chem. Phys. Lett, vol.432, issue.1-3, pp.205-208, 2006.

M. Zhang, M. Yudasaka, A. Koshio, C. Jabs, T. Ichihashi et al., Structure of single-wall carbon nanotubes purified and cut using polymer, Appl. Phys. Mater. Sci. Process, vol.74, issue.1, pp.7-10, 2002.

M. F. Zhang, M. Yudasaka, A. Koshio, and S. Iijima, Effect of polymer and solvent on purification and cutting of single-wall carbon nanotubes, Chem. Phys. Lett, vol.349, issue.1-2, pp.1181-1183, 2001.

G. G. Tibbetts, G. P. Meisner, and C. H. Olk, Hydrogen storage capacity of carbon nanotubes, filaments, and vapor-grown fibers, Carbon, vol.39, issue.15, pp.51-54, 2001.

C. P. Jones, K. Jurkschat, A. Crossley, R. G. Compton, B. L. Riehl et al., Use of high-purity metal-catalyst-free multiwalled carbon nanotubes to avoid potential experimental misinterpretations, Langmuir, vol.23, issue.18, pp.9501-9504, 2007.

S. H. Jhi, Y. K. Kwon, K. Bradley, and J. C. Gabriel, Hydrogen storage by physisorption: beyond carbon. Solid State Commun, vol.129, pp.769-773, 2004.

A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune et al., Storage of hydrogen in single-walled carbon nanotubes, Nature, vol.386, issue.6623, pp.377-379, 1997.

C. Joiner, J. Gabriel, G. Gruner, and A. Star, Nanotube sensor devices for DNA detection USA Patent, 2007.

T. Fukushima, A. Kosaka, Y. Ishimura, T. Yamamoto, T. Takigawa et al., Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes, Science, vol.300, pp.2072-2074, 2003.
DOI : 10.1126/science.1082289

T. Fukushima and T. Aida, Ionic liquids for soft functional materials with carbon nanotubes, Chem. Eur. J, vol.13, issue.18, pp.5048-5058, 2007.
DOI : 10.1002/chin.200736279

J. N. Barisci, G. G. Wallace, D. R. Macfarlane, and R. H. Baughman, Investigation of ionic liquids as electrolytes for carbon nanotube electrodes, Electrochem. Commun, vol.6, issue.1, pp.22-27, 2004.

J. Y. Wang, H. B. Chu, and Y. Li, Why single-walled carbon nanotubes can be dispersed in imidazolium-based ionic liquids, ACS Nano, vol.2, issue.12, pp.2540-2546, 2008.
DOI : 10.1021/nn800510g

K. Raiah, A. Djalab, A. Hadj-ziane-zafour, B. Soula, A. M. Galibert et al., Influence of the hydrocarbon chain length of imidazolium-based ionic liquid on the dispersion and stabilization of double-walled carbon nanotubes in water, Colloids Surf. Physicochem. Eng. Asp, vol.469, pp.107-116, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01475298

C. Jiang, A. Saha, C. Xiang, C. C. Young, J. M. Tour et al., Increased solubility, liquid-crystalline phase, and selective functionalization of single-walled carbon nanotube polyelectrolyte dispersions, ACS Nano, vol.7, issue.5, pp.4503-4510, 2013.

P. Petit, C. Mathis, C. Journet, and P. Bernier, Tuning and monitoring the electronic structure of carbon nanotubes, Chem. Phys. Lett, vol.305, issue.5-6, pp.399-400, 1999.
URL : https://hal.archives-ouvertes.fr/hal-02063810

A. Penicaud, P. Poulin, E. Anglaret, P. Petit, O. Roubeau et al., Dissolution douce of single walled carbon nanotubes, Electronic Properties of Novel Nanostructures, vol.786, pp.266-270, 2005.

A. Penicaud, P. Poulin, A. Derre, E. Anglaret, and P. Petit, Spontaneous dissolution of a single-wall carbon nanotube salt, J. Am. Chem. Soc, vol.127, issue.1, pp.8-9, 2005.

D. Voiry, C. Drummond, and A. Penicaud, Portrait of carbon nanotube salts as soluble polyelectrolytes, Soft. Matter, vol.7, issue.18, pp.7998-8001, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00678662

A. Penicaud, J. Hsu, C. A. Reed, A. Koch, K. C. Khemani et al., C60.-with coordination-compounds(tetraphenylporphinato)chromium(III) fulleride, J. Am. Chem. Soc, vol.113, issue.17, pp.6698-6700, 1991.
URL : https://hal.archives-ouvertes.fr/hal-01599902

S. E. Moya, A. Ilie, J. S. Bendall, J. L. Hernandez-lopez, J. Ruizgarcia et al., Assembly of polyelectrolytes on CNTs by Van der Waals interactions and fabrication of LBL polyelectrolyte/CNT composites, Macromol. Chem. Phys, vol.208, issue.6, pp.603-608, 2007.

J. Han, H. Kim, D. Y. Kim, S. M. Jo, and S. Y. Jang, Water-soluble polyelectrolyte-grafted multiwalled carbon nanotube thin films for efficient counter electrode of dye-sensitized solar cells, ACS Nano, vol.4, issue.6, pp.3503-3509, 2010.

H. Paloniemi, T. Aaritalo, T. Laiho, H. Liuke, N. Kocharova et al., Water-soluble full-length single-wall carbon nanotube polyelectrolytes: preparation and characterization, J. Phys. Chem. B, vol.109, issue.18, pp.8634-8642, 2005.
DOI : 10.1021/jp0443097

J. Wang, M. Musameh, and Y. H. Lin, Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors, J. Am. Chem. Soc, vol.125, issue.9, pp.2408-2409, 2003.

C. Guzman, G. Orozco, Y. Verde, S. Jimenez, L. A. Godinez et al., Hydrogen peroxide sensor based on modified vitreous carbon with multiwall carbon nanotubes and composites of Pt nanoparticles-dopamine, Electrochim. Acta, vol.54, issue.6, pp.1728-1732, 2009.

S. Banerjee, T. Hemraj-benny, and S. S. Wong, Covalent surface chemistry of single-walled carbon nanotubes, Adv. Mater, vol.17, issue.1, pp.17-29, 2005.

J. J. Porter and W. S. Perkins, A study of thermodynamics of sorption of 3 direct dyes on cellophane film, Text. Res. J, vol.40, issue.1, p.81, 1970.

W. Zhang and S. R. Silva, Reversible functionalization of multiwalled carbon nanotubes with organic dyes, Scripta Mater, vol.63, issue.6, pp.645-648, 2010.
DOI : 10.1016/j.scriptamat.2010.05.037

URL : http://epubs.surrey.ac.uk/738450/4/Reversible_functionalization.pdf

W. H. Pan, S. J. Lue, C. M. Chang, and Y. L. Liu, Alkali doped polyvinyl alcohol/multi-walled carbon nano-tube electrolyte for direct methanol alkaline fuel cell, J. Membr. Sci, vol.376, issue.1-2, pp.225-232, 2011.
DOI : 10.1016/j.memsci.2011.04.026

Y. T. Shieh, G. L. Liu, H. H. Wu, and C. C. Lee, Effects of polarity and pH on the solubility of acid-treated carbon nanotubes in different media, Carbon, vol.45, issue.9, pp.1880-1890, 2007.

Z. L. Liu, B. Zhao, C. L. Guo, Y. J. Sun, Y. Shi et al., Carbon nanotube/raspberry hollow Pd nanosphere hybrids for methanol, ethanol, and formic acid electro-oxidation in alkaline media, J. Colloid Interface Sci, vol.351, issue.1, pp.233-238, 2010.

Y. L. Liu, S. H. Li, H. C. Lee, and K. Y. Hsu, Selective reactivity of aromatic amines toward 5-maleimidoisophthalic acid for preparation of polyamides bearing N-phenylmaleimide moieties, React. Funct. Polym, vol.66, issue.9, p.5, 2005.

A. Maio, L. Botta, A. C. Tito, L. Pellegrino, M. Daghetta et al., Statistical study of the influence of CNTs purification and plasma functionalization on the properties of polycarbonate-CNTs nanocomposites, Plasma Process Polym, vol.11, issue.7, pp.664-677, 2014.

F. V. Ferreira, W. Francisco, B. R. De-menezes, L. D. Cividanes, A. D. Coutinho et al., Carbon nanotube functionalized with dodecylamine for the effective dispersion in solvents, Appl. Surf. Sci, vol.357, pp.2154-2159, 2015.

M. S. Arnold, S. I. Stupp, and M. C. Hersam, Enrichment of singlewalled carbon nanotubes by diameter in density gradients, Nano Lett, vol.5, issue.4, pp.713-718, 2005.

M. C. Hersam, Materials science nanotubes sorted using DNA, Nature, vol.460, issue.7252, pp.186-187, 2009.

M. Zheng, A. Jagota, M. S. Strano, A. P. Santos, P. Barone et al., Structure-based carbon nanotube sorting by sequencedependent DNA assembly, Science, vol.302, issue.5650, pp.1545-1548, 2003.

X. L. Xie, Y. W. Mai, and X. P. Zhou, Dispersion and alignment of carbon nanotubes in polymer matrix: A review, Mater. Sci. Eng. R-Rep, vol.49, issue.4, pp.89-112, 2005.

B. Vigolo, A. Penicaud, C. Coulon, C. Sauder, R. Pailler et al., A simple method to make carbon nanotubes fibers, Electronic Properties of Molecular Nanostructures, vol.591, pp.562-567, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02183664

B. Vigolo, P. Launois, M. Lucas, S. Badaire, P. Bernier et al., Fibers of carbon nanotubes, Making Functional Materials with Nanotubes, vol.706, pp.3-8, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02183761

P. Davidson, J. C. Gabriel, A. M. Levelut, and P. Batail, A new nematic suspension based on all-inorganic polymer rods, Europhys. Lett, vol.21, issue.3, pp.317-322, 1993.

P. Davidson, J. C. Gabriel, A. M. Levelut, and P. Batail, Nematic liquid-crystalline mineral polymerS, Adv. Mater, vol.5, issue.9, pp.665-668, 1993.

N. Donkai, H. Hoshino, K. Kajiwara, and T. Miyamoto, Lyotropic mesophase of imogolite. 3. Observation of liquid-crystal structure by scanning electron and novel polarized optical microscopy, Makromolekulare Chemie Macromol. Chem. Phys, vol.194, issue.2, pp.559-580, 1993.

J. C. Gabriel and P. Batail, Liquid crystals with a mineral core, Actual. Chim, vol.12, issue.8-9, pp.13-21, 1999.

J. C. Gabriel and P. Davidson, New trends in colloidal liquid crystals based on mineral moieties, Adv. Mater, vol.12, issue.1, p.9, 2000.

P. Davidson, P. Batail, J. C. Gabriel, J. Livage, C. Sanchez et al., Mineral liquid crystalline polymers, Prog. Polym. Sci, vol.22, issue.5, pp.12-21, 1997.

J. C. Gabriel and P. Davidson, Mineral liquid crystals from selfassembly of anisotropic nanosystems

, Topics in Current ChemistrySeries, vol.1, pp.119-172, 2003.

P. M. Ajayan, O. Stephan, C. Colliex, and D. Trauth, Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite, Science, vol.265, issue.5176, pp.1212-1214, 1994.

M. Arjmand, M. Mahmoodi, G. A. Gelves, S. Park, and U. Sundararaj, Electrical and electromagnetic interference shielding properties of flow-induced oriented carbon nanotubes in polycarbonate, Carbon, vol.49, issue.11, pp.3430-3440, 2011.

Y. Dror, W. Salalha, R. L. Khalfin, Y. Cohen, A. L. Yarin et al., Carbon nanotubes embedded in oriented polymer nanofibers by electrospinning, Langmuir, vol.19, issue.17, pp.7012-7020, 2003.

R. Haggenmueller, H. H. Gommans, A. G. Rinzler, J. E. Fischer, and K. I. Winey, Aligned single-wall carbon nanotubes in composites by melt processing methods, Chem. Phys. Lett, vol.330, issue.3-4, pp.1013-1020, 2000.

Y. Huang, X. F. Duan, Q. Q. Wei, and C. M. Lieber, Directed assembly of one-dimensional nanostructures into functional networks, Science, vol.291, issue.5504, pp.630-633, 2001.

P. Potschke, A. R. Bhattacharyya, and A. Janke, Melt mixing of polycarbonate with multiwalled carbon nanotubes: microscopic studies on the state of dispersion, Eur. Polym. J, vol.40, issue.1, pp.137-148, 2004.

L. J. Lanticse, Y. Tanabe, K. Matsui, Y. Kaburagi, K. Suda et al., Shear-induced preferential alignment of carbon nanotubes resulted in anisotropic electrical conductivity of polymer composites, Carbon, vol.44, issue.14, pp.3078-3086, 2006.

L. Onsager, The effects of shape on the interaction of colloidal particles, Ann. N. Y. Acad. Sci, vol.51, issue.4, pp.627-659, 1949.

G. J. Vroege, The isotropic-nematic phase-transition and other properties of a solution of semiflexible poly-electrolytes, J. Chem. Phys, vol.90, issue.8, pp.4560-4566, 1989.

G. J. Vroege and H. N. Lekkerkerker, Phase-transitions in lyotropic colloidal and polymer liquid-crystals, Rep. Prog. Phys, vol.55, issue.8, pp.1241-1309, 1992.

A. M. Somoza, C. Sagui, and C. Roland, Liquid-crystal phases of capped carbon nanotubes, Phys. Rev. B, vol.63, issue.8, p.81403, 2001.

W. H. Song, I. A. Kinloch, and A. H. Windle, Nematic liquid crystallinity of multiwall carbon nanotubes, Science, vol.302, issue.5649, p.1363, 2003.

W. H. Song and A. H. Windle, Isotropic-nematic phase transition of dispersions of multiwall carbon nanotubes, Macromolecules, vol.38, issue.14, pp.6181-6188, 2005.

S. Badaire, C. Zakri, M. Maugey, A. Derre, J. N. Barisci et al., Liquid crystals of DNA-stabilized carbon nanotubes, Adv. Mater, vol.17, issue.13, p.1673, 2005.

F. Camerel, J. C. Gabriel, P. Batail, P. Davidson, B. Lemaire et al., Original single walled nanotubules based on weakly interacting covalent mineral polymers, Nano Lett, vol.2, issue.1, pp.403-407, 2002.

E. Paineau, M. E. Krapf, M. S. Amara, N. V. Matskova, I. Dozov et al., A liquid-crystalline hexagonal columnar phase in highly-dilute suspensions of imogolite nanotubes, Nat. Commun, vol.7, p.10271, 2016.
URL : https://hal.archives-ouvertes.fr/cea-01251618

J. C. Gabriel, F. Camerel, B. J. Lemaire, H. Desvaux, P. Davidson et al., Swollen liquid-crystalline lamellar phase based on extended solid-like sheets, Nature, vol.413, issue.6855, pp.504-508, 2001.

P. Davidson, C. Penisson, D. Constantin, and J. C. Gabriel, Isotropic, nematic, and lamellar phases in colloidal suspensions of nanosheets, Proc. Natl. Acad. Sci. USA, vol.115, issue.26, pp.6662-6667, 2018.

D. Kleshchanok, P. Holmqvist, J. M. Meijer, and H. N. Lekkerkerker, Lyotropic smectic B phase formed in suspensions of charged colloidal platelets, J. Am. Chem. Soc, vol.134, issue.13, pp.5985-5990, 2012.

H. H. Wensink, Columnar versus smectic order in systems of charged colloidal rods, J. Chem. Phys, vol.126, p.194901, 2007.

G. J. Vroege, D. M. Thies-weesie, A. V. Petukhov, B. J. Lemaire, and P. Davidson, Smectic liquid-crystalline order in suspensions of highly polydisperse goethite nanorods, Adv. Mater, vol.18, issue.19, p.2565, 2006.

N. Miyamoto and T. Nakato, Liquid crystalline nature of K4Nb6O17 nanosheet sols and their macroscopic alignment
DOI : 10.1002/1521-4095(20020916)14:18<1267::aid-adma1267>3.0.co;2-o

, Adv. Mater, vol.14, issue.18, p.1267, 2002.

S. H. Lim, H. S. Jang, J. M. Ha, T. H. Kim, P. Kwasniewski et al., Highly ordered and highly aligned two-dimensional binary superlattice of a SWNT/cylindrical-micellar system, Angew. Chem. Int. Ed, vol.53, issue.46, pp.12548-12554, 2014.

D. Vijayaraghavan, Self-assembled ordering of single-walled carbon nanotubes in a lyotropic liquid crystal system, J. Mol. Liq, vol.199, pp.128-132, 2014.

S. R. Lustig, E. D. Boyes, R. H. French, T. D. Gierke, M. A. Harmer et al., Lithographically cut single-walled carbon nanotubes: controlling length distribution and introducing end-group functionality, Nano Lett, vol.3, issue.8, pp.1007-1012, 2003.
DOI : 10.1021/nl034219y

R. Kamalakaran, M. Terrones, T. Seeger, P. Kohler-redlich, M. Ruhle et al., Synthesis of thick and crystalline nanotube arrays by spray pyrolysis, Appl. Phys. Lett, vol.77, issue.21, pp.3385-3387, 2000.

M. Mayne, N. Grobert, M. Terrones, R. Kamalakaran, M. Ruhle et al., Pyrolytic production of aligned carbon nanotubes from homogeneously dispersed benzene-based aerosols, Chem. Phys. Lett, vol.338, issue.2-3, pp.278-278, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00144727

M. Mayne, N. Grobert, M. Terrones, R. Kamalakaran, M. Ruhle et al., Pure and aligned carbon nanotubes produced by the pyrolysis of benzene-based aerosols, Electronic Properties of Molecular Nanostructures, vol.591, pp.204-207, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00136714

G. L. Tang, X. F. Zhang, S. H. Yang, V. Derycke, and J. J. Benattar, New confinement method for the formation of highly aligned and densely packed single-walled carbon nanotube monolayers, Small, vol.6, issue.14, pp.1488-1491, 2010.

N. Sridi, B. Lebental, E. Merliot, C. S. Cojocaru, J. Azevedo et al., Mechanical properties of suspended few layers graphene sheets, Advanced Materials, Cnts, Particles, Films and Composites, vol.1, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00796312

N. Sridi, B. Lebental, J. Azevedo, J. C. Gabriel, and A. Ghis, Electrostatic method to estimate the mechanical properties of suspended membranes applied to nickel-coated graphene oxide, Appl. Phys. Lett, vol.103, issue.5, p.51907, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00860866

C. A. Dyke and J. M. Tour, Solvent-free functionalization of carbon nanotubes, J. Am. Chem. Soc, vol.125, issue.5, pp.1156-1157, 2003.

D. Tasis, N. Tagmatarchis, V. Georgakilas, and M. Prato, Soluble carbon nanotubes, Chem. Eur. J, vol.9, issue.17, pp.4001-4008, 2003.

K. Balasubramanian and M. Burghard, Chemically functionalized carbon nanotubes, Small, vol.1, issue.2, pp.180-192, 2005.

M. Burghard, Electronic and vibrational properties of chemically modified single-wall carbon nanotubes, Surf. Sci. Rep, vol.58, issue.1-4, pp.1-109, 2005.

A. Hirsch and O. Vostrowsky, Functionalization of carbon nanotubes, Functional molecular nanostructures, vol.245, pp.193-237, 2005.

M. Prato, K. Kostarelos, and A. Bianco, Functionalized carbon nanotubes in drug design and discovery, Acc. Chem. Res, vol.41, issue.1, pp.60-68, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00281706

J. N. Coleman, Liquid-phase exfoliation of nanotubes and graphene, Adv. Func. Mater, vol.19, issue.23, pp.3680-3695, 2009.

L. J. Meng, C. L. Fu, and Q. H. Lu, Advanced technology for functionalization of carbon nanotubes, Prog. Nat. Sci, vol.19, issue.7, pp.801-810, 2009.

X. H. Peng and S. S. Wong, Functional covalent chemistry of carbon nanotube surfaces, Adv. Mater, vol.21, issue.6, pp.625-642, 2009.

P. Singh, S. Campidelli, S. Giordani, D. Bonifazi, A. Bianco et al., Organic functionalisation and characterisation of single-walled carbon nanotubes, Chem. Soc. Rev, vol.38, issue.8, pp.2214-2230, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00431810

N. Karousis, N. Tagmatarchis, and D. Tasis, Current progress on the chemical modification of carbon nanotubes, Chem. Rev, vol.110, issue.9, pp.5366-5397, 2010.

K. A. Wepasnick, B. A. Smith, J. L. Bitter, and D. H. Fairbrother, Chemical and structural characterization of carbon nanotube surfaces, Anal. Bioanal. Chem, vol.396, issue.3, pp.1003-1014, 2010.
DOI : 10.1007/s00216-009-3332-5

F. V. Ferreira, W. Francisco, B. R. Menezes, F. S. Brito, A. S. Coutinho et al., Correlation of surface treatment, dispersion and mechanical properties of HDPE/CNT nanocomposites, Appl. Surf. Sci, vol.389, pp.921-929, 2016.

R. Scaffaro, A. Maio, S. Agnello, and A. Glisenti, plasma functionalization of multiwalled carbon nanotubes and their use in the preparation of nylon 6-based nanohybrids. Plasma Process, Polym, vol.9, issue.5, pp.503-512, 2012.

D. B. Mawhinney, V. Naumenko, A. Kuznetsova, J. T. Yates, J. Liu et al., Infrared spectral evidence for the etching of carbon nanotubes: ozone oxidation at 298 K, J. Am. Chem. Soc, vol.122, issue.10, pp.2383-2384, 2000.
DOI : 10.1021/ja994094s

S. Banerjee and S. S. Wong, Rational sidewall functionalization and purification of single-walled carbon nanotubes by solution-phase ozonolysis, J. Phys. Chem. B, vol.106, issue.47, pp.12144-12151, 2002.
DOI : 10.1021/jp026304k

J. M. Simmons, B. M. Nichols, S. E. Baker, M. S. Marcus, O. M. Castellini et al., Effect of ozone oxidation on single-walled carbon nanotubes, J. Phys. Chem. B, vol.110, issue.14, pp.7113-7118, 2006.

G. Te-velde, F. M. Bickelhaupt, E. J. Baerends, C. F. Guerra, S. J. Van-gisbergen et al., Chemistry with ADF, vol.22, pp.931-967, 2001.

G. Saleh, C. Gatti, and L. Lo-presti, Non-covalent interaction via the reduced density gradient: Independent atom model vs experimental multipolar electron densities, Comput. Theor. Chem, vol.998, pp.148-163, 2012.
DOI : 10.1016/j.comptc.2012.07.014

I. V. Sochava and O. N. Trapeznikova, The specific heat of chain structures at low temperatures, Dokl. Akad. Nauk. SSSR, vol.113, issue.4, pp.784-786, 1957.

S. A. Umoren, I. B. Obot, A. Madhankumar, and Z. M. Gasem, Effect of degree of hydrolysis of polyvinyl alcohol on the corrosion inhibition of steel: theoretical and experimental studies, J. Adhes. Sci. Technol, vol.29, issue.4, pp.271-295, 2015.

F. Wurm, A. M. Hofmann, A. Thomas, C. Dingels, and H. Frey, Alpha, omega(n)-heterotelechelic hyperbranched polyethers solubilize carbon nanotubes, Macromol. Chem. Phys, vol.211, issue.8, pp.932-939, 2010.
DOI : 10.1002/macp.200900652

, Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations