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Abstract
Carbon nanotubes (CNTs) are a central part of advanced nanomaterials and are used in state-of-the-art technologies, based on 
their high tensile strength, excellent thermal transfer properties, low-band gaps and optimal chemical and physical stability. 
Carbon nanotubes are also intriguing given their unique π-electron-rich structures, which opens a variety of possibilities for 
modifications and alterations of their chemical and electronic properties. In this review, a comprehensive survey of the meth-
ods of solubilization of carbon nanotubes is presented, forming the methodological foundation for synthesis and manufactur-
ing of modified nanomaterials. The methods presented herein show that solubilized carbon nanotubes have a great potential 
in being applied as reactants and components for advanced solar cell technologies, nanochemical compounds in electronics 
and as parts in thermal transfer management. An example lies in the preservation of the aromatic chemistry in CNTs and 
ligation of functional groups to their surfaces, which confers CNTs with an optimal potential as tunable Schottky contacts, 
or as parts in nanotransistors and nano-resistances. Future nanoelectronic circuits and structures can therefore depend more 
and more on how carbon nanotubes are modified and functionalized, and for this, solubilization is often a critical part of their 
fabrication process. This review is important, is in conjecture with the latest developments in synthesis and modification of 
CNTs, and provides the know-how for developing new CNT-based state-of-the-art technologies, particularly with emphasis 
on computing, catalysis, environmental remediation as well as microelectronics.

Keywords  Carbon nanotubes · Nanochemistry · Modification · Organic · Reactions · Nanoelectronics · Chemical · 
Nanotechnology

Introduction

Chemical functionalization of carbon nanotubes (CNT) is 
perhaps one of the most important challenges in organic 
chemistry and chemical nanotechnology in present time. 
Not only does functionalization of carbon nanotubes play 
a critical role for achieving new variants of these organic 
nanomaterials for state-of-the-art nanotechnologies and bio-
nanotechnologies [1–7]. It can also pave the way for achieve-
ments in functionalizing similar nanomaterials such as nano-
cones, bucky-balls, graphene sheets and other nanomaterials 
composed entirely of carbon and expand the knowledge in 
organic chemistry and chemical nanotechnology. Modifica-
tion of carbon nanotubes can furthermore be a critical part 
of tailoring their properties for other applications as well, 
such as environmental remediation [8], catalysis [9–11], 
battery components [12–17], or also as fuel sources [17]. 
Functionalization and modification of the carbon nanotube is 
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essential also because it gives completely new nanomaterials 
as starting base for developing new components in nano-
electronics and nanophotonics [5, 18–27] and can provide 
unique spintronic properties for particularly photonic appli-
cations and in bionanosensors [28–39], as well as function 
as nanoswitches [18] and nanoresistors [33, 40].

In order to achieve an ideal functionalization basis for 
carbon nanotubes, solubilization, dispersion and poly-elec-
trolyzation represent the starting phase of modifying CNTs. 
These three fundamental approaches for modifying carbon 
nanotubes, without disruption of the carbon cage structure, 
or without excessive loss of the aromatic density of the sur-
face of the CNTs, are selected because they can form a basis 
for modifying CNTs to work in various applications, particu-
larly with reference towards microelectronics, where modifi-
cation is required and plays a role for the CNTs as Schottky 
contacts [41–45], biosensors [23, 46, 47] and nanotransistors 
(Fig. 1) [48–51] and also for environmental sciences [8, 52, 
53]. There CNTs have a formidable sorptive character [54] 
and can be tailored to fit various functions such as superhy-
drophobicity, metal-sorption [55–58], aromatic compounds 
removal [59, 60] and other parts of environmental sciences 
[61]. Modifications are also critical for polymers and resins 
[62–65], fortified materials [66–68], sensors [69–71] and 
also computational processing units [72].

This work is novel in that it combines the recent and older 
literature from chemical approaches for functionalizing 

nanotubes with a spectrum of methodological details and 
particularly a consistent applicability of the given method-
ologies towards recent and industrially relevant sciences. 
It described also the electronic properties that lie behind 
the modifications made on nanotubes, in a pedagogical 
manner, particularly for the student audience in the field of 
nanosciences. Combined altogether, the presented data is 
intended to stimulate the nanoscientist to develop new mate-
rials and composites and enhance the importance of modi-
fied nanotubes, for their applications in nanotechnology.

Suspension of carbon nanotubes

Solvent suspension and dispersion of CNTs

Functionalization of a nanomaterial implies the ability to 
change its chemical and physical properties by means of 
chemical reactions. Functionalization requires an optimal 
interface contact between the nanomaterial and the reac-
tants, to reach a good chemical interaction and a high repro-
ducible yield of the chemical reaction products. For this, 
a series of solvents (Fig. 2) which merge reactants with 
the aromatic surfaces of carbon nanotubes [54, 73, 74] are 
required. However, solvation of pristine carbon nanotubes 
is virtually impossible, as their surface has a highly unique 
electrostatic character arranged in a non-periodic manner. 
CNTs are neither regarded as ordinary aromatic, lipophilic, 

Fig. 1   Biochip composed of 26 arrayed CNT-FET. The arrayed CNTs are based on aptamer-modified carbon nanotubes. Reproduced with per-
missions from Ref. [50]. Copyright© 2013 American Chemical Society
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or polar, given their population of π-electrons which is not 
counter-balanced by aromatic hydrogens, as found in the 
main reference aromatic compound—benzene, its cousins 
naphthalene, anthracene and other liquid aromatic com-
pounds. This can be seen in the illustration in Fig. 3, which 
shows the unique π-electronic surface of CNTs and the refer-
ence surfaces of the aromatic structures of benzene, naph-
thalene and anthracene.

Pristine CNTs can however be suspended in solution 
and their surface of interaction be made more accessible to 
various reactants by devising the right solvents for chemi-
cal reactions between the carbon nanotube and a chemical 
compound. A set of compounds are required for this and 
bear often aromatic/hydrophobic and ionic properties.

N-N-Dimethylformamide (DMF) has been used for sus-
pending CNTs in microdroplets for nanoelectronic purposes 
and leads to the formation of suspended bundles of CNTs 
[75]. DMF has also been used as a solvent for other nano-
materials similar to the carbon nanotube, such as graphene 
oxide nanoparticles [76]. However, being a volatile sol-
vent, DMF may be unsuitable for reactions of exothermic 
character, and a solvent with lower heats of vaporization is 
preferred when undertaking modifications of pristine car-
bon nanotubes for functionalization. Gojny et al. [77] used 

acetone to disperse a suspension of oxidized carbon nano-
tubes by ultrasonication, where acetone formed a solubiliz-
ing phase in contact with the hydroxylated side-chains of the 
modified CNT surface.

CNTs can also be dispersed in diethyl ether [78] during 
a process for fluorination of carboxylated multiwall CNTs 
(MWCNT-COOH). The process for solvation of the car-
boxylated nanotubes is applied after a modification of the 
MWCNTs surface, where 1 g of MWCNT-COOH is mixed 
with 10 ml of diethylene glycol dimethyl ether (DGDE) 
and 3.1 g 4-fluoroaniline in a flame-dried bottleneck flask 
under an inert atmosphere of nitrogen. 4 mL of amyl nitrate 
is then added to the mixture, which is at last diluted with 
diethyl ether. The function of 4-fluoroaniline and DGDE lies 
in transferring the fluorine to the CNT surface for covalent 
bond formation. The final step of diluting modified CNTs in 
diethyl ether is made given that diethyl ether has a very high 
heat capacity (Table 1). Its boiling point is however very low 
(34.6 °C) and can therefore be unsuitable for many reactions 
which release heat, such as oxidation reaction of pristine 
CNTs. Diethyl ether is nevertheless a very suitable solvent 
for storing modified CNTs over long periods of time as it 
protects the added side-chains on the surface of the CNTs 
from reacting with one CNT and another.

Fig. 2   2D structures of selected 
solvents for carbon nanotubes. 
From top left: DMF; acetone; 
diethyl ether; ethanol; propanol; 
methanol; DMSO; polyether; 
phenol; catechol; pyrogallol. 
Refer to Table 1 for details
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In order to preserve the chemical surface of modified 
CNTs, a careful selection of right solvents must be made. 
Lin and Xing [74] have compared several solvents for inter-
action with CNT surfaces, using pristine CNTs. Their results 
showed that pyrogallol and 1-naphthol had a particularly 
high affinity of binding to the CNTs in multiple layers as 
well as at higher binding coefficients than other tested sol-
vents (phenol, cyclohexanol, catechol, phenylphenol). The 
binding coefficient for naphthol increased threefold when 
the diameter of the CNT was reduced from 100 to 10 nm 
[74], a feature that was also observed in a separate study via 
molecular simulations [79]. It showed that two relatively 
large planar polycyclic aromatic hydrocarbons (PAHs), per-
ylene and retene, interact well with the surface of CNTs in 
multiple layers (Fig. 4). This pattern of aromatic plane-to-
CNT interaction, which also occurs between aromatic mol-
ecules [80], favors aromatic solvents for dispersing pristine 
CNTs in a liquid media and forms a basis of nanochemistry 
approaches where aromatic properties are essential com-
ponents, either as individual compounds and reactants or 
as functional groups in selected reactants. Gotovac et al. 
reported also interesting results and showed that the linear 
four-ringed aromatic compounds tetracene has a superior 
sorption coefficient to the CNT surface compared to phenan-
threne (three-ringed non-linear) and toluene (single-ringed 

with methyl group) [81]. Interestingly, the curvature of the 
surface of the CNT is also critical for sorption and disper-
sion potential of the CNT in a media, and high-curvature 
CNTs (small diameter) are expected to have a lower sorption 
efficiency compared to lower curvature CNTs (large diam-
eter) towards large planar aromatic compounds, given the 
increasing planarity of the surface of larger CNTs, as also 
shown in the simulation study mentioned [54]. However, for 
smaller polycyclic aromatic hydrocarbons, the higher sur-
face curvature (smaller diameter) has a favorable effect for 
increasing sorption to the CNT surface [74]. This relation-
ship between curvature and aromatic sorption capacity forms 
also a basis for dilution and dispersion methods for CNTs, 
where pristine CNTs can possibly solubilize to a diluted/
liquid state at 900 °C if vaporized tetracene is gradually 
cooled slightly below its boiling point of 704 °C (Table 1) 
or by using other PAHs of several rings in their liquid state 
(such as pyrene).

Another similar group of CNT dispersants are phenolic 
solvents which have a good binding capacity towards CNTs. 
Lin and Xing showed this by comparing the relative sorption 
capacity of pristine CNTs to phenol, catechol and pyrogallol, 
which increases in order by the number of OH groups pro-
vided by the solvating compound (phenol < catechol < pyro-
gallol) [74]. The aromatic hydroxyl-containing compounds 

Table 1   A list of selected solvents for carbon nanotubes (Fig. 2)

C heat capacity, ∆Hc std. enthalpy of combustion, ∆Hvap heat of vaporization at room temperature
a [201]
b [202]
c Calculated computationally with Amsterdam Density Functional [199]

Solvent Character C (J/K mol) Boiling point (°C) ∆Hvap (kJ/mol) Dipole 
moment 
(Debye)

References 
of use with 
CNTs

DMF Amphiphilic 146.05 153 47.6 3.86 [75, 76]
Acetone Amphiphilic 125.45 56 31.30 2.91 [77]
Diethyl ether Amphiphilic 172.50 34.6 26.17 1.15 [78]
Ethanol Amphiphilic 111.46 78.1 (95.5%) 38.56 1.69 [127]
Propanol Amphiphilic 0.21 82.6 44 1.63 [128]
PDDA [134]
Polyvinyl alcohol Amphiphilic 57–67 228 60–300a 7.34b [132]
Methanol Amphiphilic 79.50 64.70 38.28 1.69 [133]
DMSO Amphiphilic/aprotic 149.40 189 52.50 3.96 [82, 118, 122]
1-Naphthol Aromatic-polar 172.80 (gas) 285 59.70 1.56 [74]
Catechol (1,2-benzenediol) Aromatic-polar 186.33 (gas) 513 61.2 2.64 [74]
Pyrogallol Aromatic-polar 552.97 (gas) 309 62.13 1.97c [74]
Tetracene Aromatic (linear geometry) 468 (gas) 704.82 106.20 NA [81]
Ionic PAHs Aromatic/ionic – – – – [126]
Polyethers Polymeric, polyglycerol/polyeth-

ylene oxide, amphiphilic
– – – – [203]

PAMI Polymeric, polyimide, amphi-
philic

– – – – [82]
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provide a particularly polarized bond at the C–OH junction, 
which interacts extra strongly with the carbon moieties from 
the hexagonal carbon geometries (Fig. 5). This type of non-
covalent interaction generates more flexible interactions, 
than plane-to-plane interactions as for aromatic compounds, 
and can therefore be more suitable when CNTs are already 
partly modified or oxidized.

CNTs can also be suspended by adding emulgating 
moieties to their surfaces. Chang and Liu prepared two 
suspensions of MWCNTs by reversibly attaching furfuryl 
alcohol (FA) and N-(4-hydroxylphenyl)maleimide (NMHI) 
separately to the surface of the MWCNTs in a dimethyl 
sulfoxide (DMSO) solution [82]. MWCNTs acted as dien-
ophiles in the polar aprotic environment provided by the 
solvent DMSO, while the FA and NMHI donated sp2 elec-
trons to form reversible bonds with the MWCNTs. Both 
suspensions were prepared at 50 °C over 96 h by mixing 
20 mmol of furfuryl alcohol (and 20 mmol NMHI for the 

second suspension) dissolved in 15 mL DMSO with 0.05 g 
MWCNT. In a similar manner to DMSO, other related sol-
vents such as DMF (dimethylformamide) and hexamethyl-
phosphoramide (HMPA) provide also intermediate dielec-
tric environments and hydrogen-bonding groups, which are 
particularly suitable in forming appropriate chemical and 
molecular environments for facilitating reactions between 
CNTs and electron donors/acceptors. Other similar types 
of aprotic solvents are tetrahydrofuran (THF), ethyl acetate 
acetone and acetonitrile.

Surfactant‑assisted suspensions of CNTs

Surfactants have been used very early on to help in the 
dispersion and purification of CNTs in aqueous solutions 
[83–86]. One of the interest of surfactants is that they are 
theoretically easy to remove by washing, although some 
prove difficult to rinse off completely, which can to be a 
problem, especially when making electronic devices, such 
as gas sensors [87]. Early reports used easy to access sur-
factants such as sodium dodecyl sulfate (SDS), benzalko-
nium chloride, sodium dodecylbenzene sulfonate or non-
ionic ones such as polyglycol ether of high weight [83–86]. 
Since then, a multitude of surfactants have been used to 
various outcomes and to enable a wide range of applica-
tions. This has, however, already be the subject on recent 
reviews [88–91], we are therefore not developing further 
this approach beyond a few highlights presented in the fol-
lowing sections.

At this point it is timely to make a side note regarding 
the use of ultrasounds (US) that are commonly used to 
help disperse CNT bundles into solutions or suspensions 
of individual CNTs. Indeed, the use of US is far from neu-
tral, especially when high-energy US are being used (US 
horns). One can cite at least three major effects associated 
with the use of US. First, they can induce local defects on 
their structure [92–97]. Green et al. reported that defects 
ranging from bending and buckling up to breakage of small 
pieces of graphitic layers were reported early on via TEM 
studies. When dealing with MWCNT, this could lead to the 
thinning of the nanotube by removal of one or more of the 
outer graphitic walls. They also reported that the effect was 
solvent dependent with a reduction of the amount of dam-
ages when using water or ethanol [92]. Secondly, as defects 
multiply, US can induce the breaking or shortening of CNTs 
[98–107]. Finally, an indirect effect is that the US horn used 
when applying high-energy US is itself affected by them 
and hence releases nanoparticles of the alloy forming the 
horn, usually stainless steel or titanium [108, 109]. This can 
be very detrimental to subsequent work performed using 
such polluted CNT suspensions [109]. A typical example 
of such side effect was reported in the field of hydrogen 
storage [110], where high storage capacity was reported 

Fig. 3   Electron density plots for CNT, anthracene, naphthalene and 
benzene (from top to bottom). The comparison of the ED plots shows 
how the CNTs lack the weakly acidic hydrogens, making them com-
pletely insoluble in virtually any solvent. ED maps generated with 
Amsterdam Density Functional [199]
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for carbon nanotubes [111]. This capacity, together with 
the difficulty to reproduced the published result, were later 
attributed to the significant amount metallic nanoparticles 
impurities present in the material tested and arising from 
the horn [108]. Such large amounts were induced by using 
long and powerful exposures to ultrasounds to produce as 
high specific surface area materials as possible in order to 
increase the overall amount of hydrogen adsorption onto the 
CNTs [111]. In order to seek as reproducible processes as 
possible, when dealing with US and CNTs suspensions, we 
therefore strongly suggest (1) to closely monitor the amount 
of US used to treat the solution; (2) to characterize each 
batch to verify the morphologies, length distribution and 
other characteristic of the CNTs used. When suspensions 
are not stable on the long term, a good practice is therefore 
to make a new suspension from the original source of CNTs 
for each process batch [33, 112].

Ionic liquid suspensions of CNTs

One must wait 2003 to see first reports of dispersion of 
CNTs in room-temperature ionic liquids (RTIL) [113]. In 
this report pristine CNTs can be dispersed into imidazo-
lium ion-based RTIL after grounding, thus forming a gel 
in which they form much finer bundles than initial ones. 
As per the authors, these gels are formed by physical cross-
linking of the bundles, associated to a local molecular order-
ing of the ionic liquids. Typically, when single-walled car-
bon nanotubes (SWCNTs) in 1-alkyl-3-methylimidazolium 
tetrafluoroborate (AMIBF4–alkyl = ethyl, n-butyl, n-hexyl) 
were ground and then centrifugated, a black lower highly 
viscous gel of SWCNTs in AMIBF4 (0.5–2.5 wt% depending 
on the SWCNT source and RTIL used) was obtained. These 

gels present interesting features: (1) with both an electronic 
conduction arising from the percolation path via SWCNTs 
and ionic conduction thanks to the RTIL; (2) they behave 
as quasi-solid materials, hence enabling the fabrication of 
electrode materials. This explained the numerous reports 
that were subsequently published where such gels were used 
as electrodes in electrochemical energy storage capacitors or 
batteries [114, 115].

The dispersion mechanism of SWCNTs in RTIL was 
investigated by various spectroscopic and molecular mod-
eling approaches by Wang et al., which shows that they 
interact via weak van der Waals interaction rather than “cat-
ion–pi” interaction. This keeps SWCNT’s electronic struc-
ture intact. Dispersion of SWCNTs in ionic liquids having 
very high dielectric constants is made possible thanks to the 
shielding of the pi–pi stacking interaction [116].

Overall, if pristine SWCNTs are thus dispersed, hence 
enabling many applications, the viscosity of these suspen-
sions can be further tuned by modifying the RTIL as well 
as making aqueous solution of the gel. Such work has been 
reported by Flahaut et al. in which imidazolium-based ionic 
liquids with a long hydrocarbon chain enable high concen-
tration dispersion of pristine double-walled carbon nano-
tubes (DWCNTs) in water, having a low viscosity (similar 
to the one of water) and thus even at low IL concentration 
(1 mM) [117]. It should be noted that dispersibility of DWC-
NTs increased with as the length of the hydrocarbon chain 
increased. The suspensions of partially de-bundled DWC-
NTs proved to be stable for over a month. Typically, con-
centrated aqueous suspensions of DWCNT (50 mg/L) were 
first prepared on one hand as well as other aqueous solutions 
of the IL (1–10 mM—4 h of stirring) on the other. The two 
stock solutions were then mixed in an ultrasonic bath for 

Fig. 4   van der Waals attraction between retene and perylene molecules onto the surface of carbon nanotubes. Depicted by measured distances. 
Adapted with permissions from Ref. [54]
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10 min followed by 30 min using an ultrasonic probe (25% 
amplitude with a pulse of 5 s on and 5 s off).

Overall, the RTIL approach appears to be a very promis-
ing and versatile tool for application requiring as pristine 
as possible CNTs whether it requires strong mechanically 
intrinsic properties or on the other extreme, low-viscos-
ity suspensions for applications such as ink jet or spray 
deposition.

Polyelectrolytic solutions of CNTs

A stable dispersion of pristine and isolated CNTs is, as 
mentioned above, nearly impossible to achieve, as strong 
van der Waal interactions between individual nanotubes in 
colloidal suspension or solution prohibit the full individu-
alization of the CNTs to form soluble individual macromol-
ecules [118]. Also, their aromatic surface does not com-
pletely match with aromatic solvents [54, 74]). However, 
several groups have recently achieved a liquid state of this 
otherwise solid nanomaterial by converting SWCNTs into 

polyelectrolytes, composed of charged CNTs (SWCNTn−) 
dissolved in a strong polar aprotic solvent, such as DMSO. 
Hence, Penicaud’s group obtained a polyelectrolytic solution 
of SWCNTs by tuning their Fermi level [119]. The addi-
tion of positive charges to carbon nanotubes was performed 
using solid lithium or sodium as a reductant [120–123]. 
Thus the formed solutions contained up to 2 mg SWCNT/g 
DMSO and 4.2 mg SWCNT/g sulfolane and were found to 
be indefinitely stable in inert atmospheric conditions [122]. 
Metastable carbon nanotube suspensions, or solvated state of 
CNTs, were made up of A(THF)C10 (A = Na, Li) where one 
negative charge was subdivided across 10 carbon atoms (one 
charge subdivided across 144 Å2) [121]. Jiang et al. pre-
pared more concentrated solutions of alkali reduced CNTs 
by adding crown-ether (16-crown-6) molecules (Fig. 6) as 
cation sequesters on SWCNT polyelectrolytes. SWCNTs’ 
concentration was high enough to enable the observation of 
a liquid-crystalline phase of pristine SWCNTs and a peak 
“solubility” of 9.4 mg/ml in DMSO [118]. The preparation 
of SWCNTs is performed by reducing the nanotubes using 

Fig. 5   Increased dispersion of functionalized CNTs. SEM micro-
graphs show how polycarbonate-based (PC) nanocomposites loaded 
with 1% of different forms of modified CNTs display different disper-
sion levels of the CNTs. From top left to bottom right PC-composites 
with: a CNTs subjected to acid treatment: 45 wt% H2SO4 150 min; 
b CNTs subjected to acid treatment at 45 wt% H2SO4 150 min plus 

plasma treatment; c CNTs subjected to acid treatment at 70  wt% 
H2SO4 for 150 min and no plasma treatment; d CNTs subjected to 
acid treatment with 70  wt% H2SO4 for 150 min plus plasma treat-
ment. Adapted with permissions from Ref. [136]. ©Copyright 2014 
Wiley–VCH Verlag GmbH & Co. KGaA, Weinheim
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alkali metals, which formed negatively charged pristine 
SWCNTs (as noted above). The formed negatively charged 
CNTs repel one another in DMSO and the alkali ions are 
sequestered by the 18-crown-6 molecules which together 
form a liquid-crystalline phase at high concentration [118]. 
When the concentration of the liquid-crystalline phase 
exceeded 9.4 mg/mL it went from solution to a viscous gel. 
The procedure for preparing liquid-crystalline SWCNTs is 
done by mixing 69.6 mg potassium metal, 163.2 mg naph-
thalene and 56 mL of distilled THF stirred for 24 h. After 
achieving a green solution, 150 mg of pristine SWCNTs is 
added to the mixture and stirred for 2 days at room tempera-
ture. The solution is then filtered on 0.45 μm PFTE mem-
branes to obtain the black solid SWCNT polyelectrolyte. The 
dried polyelectrolytes is then mixed in DMSO and stirred 
for 14 h to fully disperse the polyelectrolyte SWCNTs and 
finally centrifuged under 9900 g for 45 min. The liquid-
crystalline phase forms in the supernatant [118].

Moya and colleagues prepared a negatively charged poly-
electrolytic solution of carbon nanotubes using polystyrene 
sodium sulfonate (PSS), as well as a positively charged 
polyelectrolyte solution of SWCNTs using polyallylamine 
hydrochloride (PAA) [124]. In either case, SWCNTs were 
retained in their pristine form, and not modified on their sur-
face. This method is a hybrid approach between generating 
polyelectrolyte suspension of CNTs and solvating the CNTs 
in a polymeric molecule (as described in the next section). 
It involves the preparation of a 75–25% ethanol–water solu-
tion, in which either of the two charged polymers (PAA or 
PSS) is added to, in order to reach a polymer concentration 
of 1 mg/mL. From this point, the two separate solutions of 

the polymers in ethanol and water are mixed with an equal 
volume of SWCNTs dispersed in pure ethanol at a concen-
tration of 0.5 mg/mL. Following which the suspensions are 
centrifugated, replaced of their supernatant, ultrasonicated 
and immersed in water. The final water-solutions of coated 
SWCNTs is stable for several months and display a zeta 
potential of − 60 mV and + 40 mV, respectively, for the PSS 
and PAA-coated nanotube polyelectrolytic solutions [124].

Han et al. synthesized water-soluble MWCNTs with poly-
electrolytes attached covalently to their surface, for CNT-
based dye-sensitized solar cells [125]. The followed proce-
dure is quite different from the aforementioned studies on 
polyelectrolytic preparations, and involved mixing sodium 
styrenesulfonate (194 mmol) and 2,2,6,6-tetramethyl-1-pi-
peridinyloxy (18.9 mmol) in 200 mL ethylene glycol. A 
solution of potassium persulfate (9.6 mmol) in 45 mL of 
double-distilled H2O and a second solution of sodium meta-
bisulfite (7.2 mmol) in 15 mL double-distilled H2O are both 
added to the ethylene glycol solution and stirred at 130 °C 
under nitrogen atmosphere for 6 h. 0.4 g of MWCNTs are 
then added to the solution and allowed to react for 24 h with 
rigorous stirring, generating the surface-coated polyelec-
trolytes of CNTs. This procedure generates functionalized 
polyelectrolytes of CNTs, rather than polyelectrolytes of 
pristine CNTs. The generated solution is then sprayed to 
form a cover layer for dye-sensitized solar cells over a layer 
of fluorine-doped tin oxide, with various layer thicknesses 
ranging from 0.08 μm to 2.57 μm [125].

Paloniemi et al. prepared water-soluble polyelectro-
lyte SWCNTs by non-covalent modifications using ionic 
pyrene and naphthalene derivatives [126]. Seven different 

Fig. 6   Non-covalent interactions between phenol and anthracene. 
Left and right: the non-covalent interaction index [200] between a 
pyrogallol and an anthracene molecule, calculated by quantum chemi-
cal calculations using Amsterdam Density Functional [199] is shown 

by red dots of various proportions. The area of interaction between 
the C–OH bond from pyrogallol and the carbon atoms of anthracene 
is particularly significant (large red cluster)
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ionic polycyclic aromatic compounds (Fig. 7) were used to 
disperse oxidized SWCNTs separately: 6-amino-4-hydrox-
ynaphthalene-2-sulfonic acid, 5-aminonaphthalene-1-sul-
fonic acid, and 5-aminonaphthalene-2-sulfonic acid, which 
were recrystallized from boiling water, and another four: 
2,5-dihydroxy-1,4-benzenedisulfonic acid, 4,5-dihydrox-
ynaphthalene-2,7-disulfonate, 5-(dimethylamino)-1-naph-
thalenesulfonic and 1-pyrenemethylamine hydrochloride 
which were used as purchased. Only 4,5-dihydroxynaph-
thalene-2,7-disulfonate showed reduced solvation effects 
and was not considered further by the authors. For all other 
compounds, the procedure includes solvation of each sepa-
rate compound in water at concentration (0.5–2.5 mM for 
1-pyrenemethylamine hydrochloride) and an equivalent 
amount of NaOH is added to deprotonate the sulfonate 
groups. 1–3 mg of oxidized SWCNTs is then immersed 
in 10–15 mL of the solutions described above and soni-
cated for 1–1.5 h. The non-dispersed SWCNTs are then 
allowed to sediment overnight, and a dialysis run is per-
formed to remove excess solvent molecules. Dialysis 
of the SWCNTs dispersed with 1-pyrenemethylamine 
hydrochloride is performed with tubes pretreated with 
poly(diallyldimethylammonium)chloride to prevent sorp-
tion of cationic SWCNTs on the tubing walls [126].

In general, all these polyelectrolyte methods generate 
macromolecular solutions of CNTs, as they gain charge 
and interact with the environment either by electrostatic 
repulsion to other CNTs or by steric interaction with some 
bulky solubilized ionic counterpart. In each case however, 
the CNTs can be traced by TEM imaging, and still appear 
as nanomaterials (Fig. 8). However, their chemical state is 

charged, and is closer to a solute rather than a material or 
solid, forming an excellent platform for liquid electronics 
and nanoenergetic suspensions for nanoelectronics, solar 
cells and also computing devices.

Polymeric solvation of CNT

CNTs can also be dispersed in specific polymer solutions, 
which form non-covalent bonds to the surfaces of the nano-
tubes, dispersing them in the polymeric gel. Wang and 
colleagues used Nafion® (sulfonated tetrafluoroethylene-
based fluoropolymer-copolymer) to disperse SWCNTs and 
MWCNTs for preparation of amperometric biosensors and 
obtained a CNT solution after 36 h of suspension in a phos-
phate buffer or in ethanol, but no further detail is available 
[127]. Nafion® has also been used by Guzmán et al. by dis-
persing MWCNTs with 2-isopropanol for the attachment 
onto glassy carbon electrodes as a substrate [128]. This pro-
cedure includes the reduction and dispersion of MWCNTs 
by nitric acid followed by a functionalization by sulphuric 
acid (70%) and hydrogen peroxide (30%). This procedure, 
however, abolishes the unique electronic properties of the 
π-system in CNTs [129]. Acids and strong oxidants should 
therefore be avoided whenever structurally pristine CNTs 
are of interest in the suspension.

Zhang and Silva developed a method for dispersing 
MWCNTs by saturation of CNTs in organic dyes. The 
organic dyes used are of considerable higher molecular 
weight compared to the list of solvents in Table 1, and 
are composed of poly-ringed moieties functionalized with 
sulphonic, amide, carboxyl, ethoxy or hydroxyl groups. 
The poly-ringed dyes (such as Direct Yellow [130]) give 
a debundling effect of MWCNT clusters, and saturate the 
surfaces of the MWCNTs by chemical interaction between 
the CNTs and the amide and carboxyl groups of the dyes, 
which form MWCNT-adducts [131]. The procedure is car-
ried out by mixing 10 mg of dye and 10 mg of MWCNTs 
(inner diameter 5–10 nm, outer diameter 10–20 nm and 
length 0.5–200 μm) in an ultrasonication bath for 40 min. 
This represents a cost- and time-efficient protocol compared 
to many of the other approaches described above.

Pan and colleagues prepared a polymeric solution of 
MWCNT + polyvinyl alcohol (PVA) as a polyelectrolyte 
solution for use in direct methanol alkaline fuel cells. They 
prepared a solution of PVA in water (1 g with 30 mL water) 
at 70 °C which was purged with ozone for 15 min. The solu-
tion was then purged with argon gas to remove free peroxide 
formed in the oxidation reaction of PVA, and 500 mg of 
CNTs was added to the mixture. The mixture is stirred for 
3 h at 80 °C before used in the preparation of the electrolyte 
cells [132]. Shieh et al. applied a different approach and 
dispersed MWCNTs in methanol and obtained a good dis-
persion [133]. Methanol has also been used with fuel cells 

Fig. 7   18-Crown-6, a cyclic polyether with cation-sequestering prop-
erties, used for generating polyelectrolytes of Li/Na-reduced SWC-
NTs
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and CNTs in advanced fuel-source studies, for instance Liu 
et al. [134] prepared methanol-fuel cells based on MWCNTs 
as catalysts, in combination with palladium hollow nano-
spheres. The MWCNTs are sonicated and dispersed in 0.5% 
poly(diallyldimethylammonium chloride) (PDDA) solution 
[134]. This generates a PDDA-coated MWCNTs, by non-
covalent Coulomb interactions and forms a dispersion of 
MWCNTs. It is therefore particularly useful for generating 
a surface of positive charges on the MWCNTs, which readily 
binds to cations or metal nanoparticles. If the functional-
ity of CNTs with a positively charged-polymer coating is 
intriguing, it however masquerades the nanotube surface, 
rendering it unsuitable as a preparation method for func-
tionalization of CNTs.

Chang and Liu [82] dispersed MWCNTs with polyam-
ide maleimide (PAMI) pendent groups, which were used 
for the first time in 2006 by Liu et al. [135]. The polymeric 
solvation of MWCNTs is carried out by dissolving 0.25 g of 
PAMI in 25 mL N,N-dimethylacetamide (DMAc). 0.05 g of 
MWCNTs are then added to the solution and heated at 50 °C 

for 96 h. The resulting suspension of MWCNTs contained 
MWCNTs inter-winded with PAMI molecules, formed a 
PAMI layer of ~ 50 nm outside the CNTs. The imide groups 
from PAMI formed covalent bonds to the MWCNTs surface 
which can be dissolved by heating the suspension at 160 °C 
for 20 h [82].

The following report is mentioned here, even though the 
structure of the CNTs are quite modified by the procedure, 
as it proves that means can be found to further improve 
CNTs dispersion. It is therefore noteworthy to mention a 
study by Maio et al. who performed surface functionali-
zation plasma treatment [136]. In their study, they found 
that plasma-treated CNTs subjected to acid treatment in a 
45 wt% with H2SO4 for 150 min, gives a better dispersion 
than CNTs subjected to acid treatment at 70 wt% H2SO4 
for 150 min without prior plasma treatment. They showed 
in SEM images (Fig. 9) how this is visible with fewer and 
fewer CNTs sticking out of the composites. Depending 
on the nature of the composite, the CNTs can therefore 
be increasingly dispersed by plasma-functionalization. 

Fig. 8   Ionic PAHs used by [126] for solubilizing SWCNTs. From 
top left to bottom: 6-amino-4-hydroxynaphthalene-2-sulfonic acid, 
5-aminonaphthalene-1-sulfonic acid, and 5-aminonaphthalene-2-sul-

fonic acid, 2,5-dihydroxy-1,4-benzenedisulfonic acid, 4,5-dihydrox-
ynaphthalene-2,7-disulfonate, 5-(dimethylamino)-1-naphthalenesul-
fonic and 1-pyrenemethylamine hydrochloride
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The procedure causes a decrease in CNT diameter, but 
apparently does not affect the CNT structures to a critical 
extent [136]. Increased dispersion of CNTs has also been 
achieved using surface modifications with various chemi-
cal groups, among Ferreira et al. who linked dodecylamine 
to the surface of CNTs [137].

Finally, macromolecule wrapping around SWCNT has 
proved to be a very powerful method not only to obtained 
stable dispersion of CNTs in aqueous solutions, but it also 
enabled for the bulk sorting of SWCNTs by diameter by 
using density gradients and ultracentrifugation of Deoxyri-
bonucleic Acid (DNA) wrapped SWCNTs [138, 139]. This 
approach not only keeps the SWCNT pristine, but it also 
enables to obtain suspensions of SWCNT having fairly nar-
row disperse physical properties (for example band gap). 
The wrapping of SWCNT with single strand DNA molecule 
was first reported by Zeng et al. [140] and modified as fol-
low to enable such separation. Typically, it is reported that 
decreasing aqueous dilutions of iodixanol were used and 
superposed to make a density gradient media (in pH 8.5 
buffer). SWCNT were layered on top of the gradient. Sedi-
mentation of SWCNT was performed at 174,000g for up to 
10.5 h, when they reached their respective isopycnic points 
within the gradient. For HiPCO™ material, various bands 
could be observed (purple, green, and orange) indicating 
a rough separation of the SWCNT as a function of their 
intrinsic structure. Since these early reports, the approach 
has been fine-tuned and high-purity semiconductor or metal-
lic SWCNT suspensions of SWCNTs are now commercially 
available from Nanointegris.

Anisotropic colloidal suspensions of CNTs

To further enable some applications, not only is it neces-
sary to control the dispersion of the CNTs, but it can also be 
paramount to control the nanotube organization within the 
suspension [141]. We have already seen such a role in a pre-
vious section regarding the work of Poulin and co-workers 
and the making of highly oriented fibers of CNT/polymer 
composites [67, 142, 143], but we will develop this feature 
more specifically here. Such organization is indeed possible 
thanks to the intrinsic high anisotropy of CNTs, whether 
SWCNTs or MWCNTS. Such very high aspect ratio, some-
what similar to those of Li2Mo6Se6 nanowires [144, 145] or 
imogolite nanotubes [146–148], or other mineral liquid crys-
tals [149, 150], allow to anticipate that some anisotropy can 
be observed in such colloidal fluids/suspensions. Anisotropy 
can simply be induced by physical methods such as flow, 
electric or magnetic field. It is therefore not a permanent 
state and the induced organization usually disappears when 
the stimulus is stopped.

Flow alignment is usually induced by the shearing forces 
created by speed flow gradient existing in the fluid, just like 
tree trunks which tend to self-align along the flow on a river. 
This simple effect has been used by many groups to enable 
great achievements [67, 151–157].

An intrinsically and permanently anisotropic fluid, thus 
making these suspensions true lyotropic liquid crystals, oth-
erwise called mesophases, can however be obtained when 
sufficiently high concentrations are reached. Although the 
potential existence of such a mesophase was easily intuited 
thanks to the occurrence of an Onsager transition [158–160], 
it was more precisely predicted theoretically in 2001 [161]. 
The biggest issue at the time was to reach a CNT suspen-
sion concentration that was high enough to enable such a 
transition. One therefore had to wait for the work of Windle 
and co-workers who used highly modified (oxidized) and 
charged MWCNTs to observe an isotropic–nematic transi-
tion at of 4.8% by volume [162, 163]. The latter reference 
[163] reports however results where the CNTs were ini-
tially strongly oxidized. It is therefore of interest to high-
light the use of DNA, that can wrap around CNTs to enable 
SWCNT separations. Poulin et al. also succeeded to observe 
an isotropic/nematic typical phase transition. With the coex-
istence of both the isotropic and the nematic phase when 
SWCNT concentration was between 2 and 4 wt%, and a pure 
nematic phase above. This is likely to have been the first 
report of such a transition for aqueous suspension of pristine 
nanotubes [164].

If a nematic orientational ordering is now well estab-
lished, higher order organization (positional) could be 
also expected, such as for example a rectangular, hexago-
nal or smectic ones, which have already been observed in 
the case of few other inorganic systems [165–172]. To our 

Fig. 9   TEM image of solubilized polyelectrolytes of SWCNTs 
imaged. Image reproduced with permissions from Ref. [118] Copy-
right© 2013 American Chemical Society



	 International Nano Letters

1 3

knowledge, such ordered phases for pure lyotropic phase 
of pristine CNTs still remain to be discovered. However, 
a hexagonal mesophase has been obtained by using some 
surfactants, hence enabling an intercalated SWNT/surfactant 
hexagonal binary superlattice to be obtained [173]. In this 
first report, such ordering was obtained when hydrophilically 
functionalized single-walled carbon nanotubes (p-SWNTs 
with controlled diameters to be above that of the surfactants 
Pentaethylene glycol monododecyl ether (C12E5) cylindri-
cal micelles. Highly oriented single domains could further 
be obtained by using an oscillatory shear field [173]. A 
hexagonal phase in a binary SWCNT/SDS system was also 
reported by Vijayaraghavan [174].

In order to obtain a smectic phase of CNTs, one would 
likely need to enable both (1) reaching even higher con-
centration suspensions as well as; (2) use CNTs having a 
very narrow disperse distribution of their length and with 
an average length that would be on the order or smaller 
than the radius of curvature of the CNT considered. Such 
requirements might prove feasible by combining the above-
mentioned high concentration dispersion methods of either 
Windle or Poulin together with either the cutting method 
reported by Lustig et al. [175], or CNT obtained from sus-
pensions of CNTs issued of a very thin CNT turf [176–178].

Finally, an elegant means of deposition of highly oriented 
and densely packed monolayers of CNTs was reported by 
Benattar et al. using 2D confinement of a Newton black film 
[179], a method that was also successful for the deposition 
of graphene oxide [180, 181].

Conclusion

Overall, more than 1400 publications can be found with 
titles on the functionalization of carbon nanotubes. These 
reports sometimes enable to increase even further CNTs 
suspension’s concentrations when compared to the article 
reviewed above [129, 182–193], but as a consequence they 
often involve burying or modifying the tubular structures 
of the CNTS. Depending upon the application targeted, this 
can be a critical issue as such modification methods can 
indeed induce changes in their aromaticity [194] and their 
morphologies [195] and even destroy the tubular structures 
of CNTs [196–198]. These morphological and aromaticity 
changes are generally not an obstacle for polymer-based sci-
ence and material-synthesis where the CNTs are required as 
bulk-, filling- and fortifying material; however, in specific 
applications towards nanoelectronics, thermal applications, 
memory-devices and solar-panel technologies, the attribu-
tion of CNTs to the given applications requires these to be as 
untouched/prinstine as possible, in terms of their electronic 
properties and structural morphology. This review has there-
fore been formed as much as possible towards preserving 

CNTs as single entities in a dispersed or solvated state by 
any means possible.
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