H. Abriouel, C. M. Franz, N. Ben-omar, and A. Galvez, Diversity and applications of Bacillus bacteriocins, FEMS Microbiol. Rev, vol.35, pp.201-232, 2011.

A. A. Ahmed, M. K. Moustafa, M. , and E. H. , Incidence of Bacillus cereus in milk and some milk products, J. Food Prot, vol.46, pp.126-128, 1983.

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, Basic local alignment search tool, J. Mol. Biol, vol.215, pp.403-410, 1990.

N. Andrusier, R. Nussinov, and H. J. Wolfson, FireDock: fast interaction refinement in molecular docking, Proteins, vol.69, pp.139-159, 2007.

J. Atanasova and I. Ivanova, Antibacterial peptides from goat and sheep milk proteins, Biotechnol. Biotechnol. Equip, vol.24, pp.1799-1803, 2014.

A. Bankevich, S. Nurk, D. Antipov, A. A. Gurevich, M. Dvorkin et al., SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing, J. Comput. Biol, vol.19, pp.455-477, 2012.

H. Becker, G. Schaller, W. Von-wiese, and G. Terplan, Bacillus cereus in infant foods and dried milk products, Int. J. Food Microbiol, vol.23, pp.90218-90224, 1994.

T. Biswas, J. Small, O. Vandal, T. Odaira, H. Deng et al., Structural insight into serine protease Rv3671c that protects M. tuberculosis from oxidative and acidic stress, Structure, vol.18, pp.1353-1363, 2010.

D. Bizani, A. P. Dominguez, and A. Brandelli, Purification and partial chemical characterization of the antimicrobial peptide cerein 8A, Lett. Appl. Microbiol, vol.41, pp.269-273, 2005.

K. J. Boor, D. P. Brown, S. C. Murphy, S. M. Kozlowski, and D. K. Bandler, Microbiological and chemical quality of raw milk in New York State, J. Dairy Sci, vol.81, p.75742, 1998.

E. J. Bottone, Bacillus cereus, a volatile human pathogen, Clin. Microbiol. Rev, vol.23, pp.382-398, 2010.

F. Bougherraa, A. Dilmi-bourasa, R. Baltib, R. Przybylskic, F. Adouid et al., Antibacterial activity of new peptide from bovine casein hydrolyzed by a serine metalloprotease of Lactococcus lactis subsp lactis BR16, J. Funct. Foods, vol.32, pp.112-122, 2017.

W. J. Bullied, T. J. Buss, and J. K. Vessey, Bacillus cereus UW85 inoculation effects on growth, nodulation, and N accumulation in grain legumes: field studies, Can. J. Plant Sci, vol.82, pp.291-298, 2002.

H. Cao, T. Ke, R. Liu, J. Yu, C. Dong et al., Identification of a novel proline-rich antimicrobial peptide from Brassica napus, PLoS ONE, vol.10, 2015.

F. Carlin, J. Brillard, V. Broussolle, T. Clavel, C. Duport et al., Adaptation of Bacillus cereus, an ubiquitous worldwide-distributed foodborne pathogen, to a changing environment, Food Res. Int, vol.43, pp.1885-1894, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01204240

E. Cascales, S. K. Buchanan, D. Duche, C. Kleanthous, R. Lloubes et al., Colicin biology. Microbiol. Mol. Biol. Rev, vol.71, pp.158-229, 2007.

S. Ceuppens, N. Boon, U. , and M. , Diversity of Bacillus cereus group strains is reflected in their broad range of pathogenicity and diverse ecological lifestyles, FEMS Microbiol. Ecol, vol.84, pp.433-450, 2013.

I. Chaabouni, I. Barkallah, C. Hamdi, A. Jouini, M. Saidi et al., Metabolic capacities and toxigenic potential as key drivers of Bacillus cereus ubiquity and adaptation, Ann. Microbiol, vol.65, pp.975-983, 2015.

A. Cherif, B. Ettoumi, A. Najjari, N. Raddadi, and A. Boudabous, Esterase electrophoretic polymorphism of Bacillus thuringiensis and Bacillus cereus reference strains, Ann. Microbiol, vol.57, pp.21-27, 2007.

C. Claudel-renard, C. Chevalet, T. Faraut, and D. Kahn, Enzyme-specific profiles for genome annotation: PRIAM, Nucleic Acids Res, vol.31, pp.6633-6639, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00427393

A. Dabrowska, M. Szoltysik, K. Babij, M. Pokora, A. Zambrowicz et al., Application of asian pumpkin (Cucurbita ficifolia) serine proteinase for production of biologically active peptides from casein, Acta Biochim. Pol, vol.60, pp.117-122, 2013.

I. W. Davis, A. Leaver-fay, V. B. Chen, J. N. Block, G. J. Kapral et al., MolProbity: all-atom contacts and structure validation for proteins and nucleic acids, Nucleic Acids Res, vol.35, pp.375-383, 2007.

H. A. Elbarbary, A. M. Abdou, Y. Nakamura, E. Y. Park, H. A. Mohamed et al., Identification of novel antibacterial peptides isolated from a commercially available casein hydrolysate by autofocusing technique, Biofactors, vol.38, pp.309-315, 2012.

N. Figueroa-bossi and L. Bossi, Inducible prophages contribute to Salmonella virulence in mice, Mol. Microbiol, vol.33, pp.167-176, 1999.

M. Ghoul and S. Mitri, The ecology and evolution of microbial competition, Trends Microbiol, vol.24, pp.833-845, 2016.

M. Gohar, N. Gilois, R. Graveline, C. Garreau, V. Sanchis et al., A comparative study of Bacillus cereus, Bacillus thuringiensis and Bacillus anthracis extracellular proteomes, Proteomics, vol.5, pp.3696-3711, 2005.

E. J. Gray, K. D. Lee, A. M. Souleimanov, M. R. Di-falco, X. Zhou et al., A novel bacteriocin, thuricin 17, produced by plant growth promoting rhizobacteria strain Bacillus thuringiensis NEB17: isolation and classification, J. Appl. Microbiol, vol.100, pp.1072-1075, 2006.

C. Hamdi, J. Essanaa, L. Sansonno, E. Crotti, K. Abdi et al., Genetic and biochemical diversity of Paenibacillus larvae isolated from Tunisian infected honey bee broods, Biomed. Res. Int, p.479893, 2013.

E. Haque, C. , and R. , Antihypertensive and antimicrobial bioactive peptide from milk proteins, Eur. Food Res. Technol, vol.227, pp.7-15, 2008.

M. Hayes, R. P. Ross, G. F. Fitzgerald, C. Hill, S. et al., Casein-derived antimicrobial peptides generated by Lactobacillus acidophilus DPC6026, Appl. Environ. Microbiol, vol.72, pp.2260-2264, 2006.

M. E. Hibbing, C. Fuqua, M. R. Parsek, and S. B. Peterson, Bacterial competition: surviving and thriving in the microbial jungle, Nat. Rev. Microbiol, vol.8, pp.15-25, 2010.

Y. C. Huang, Y. M. Lin, T. W. Chang, S. J. Wu, Y. S. Lee et al., The flexible and clustered lysine residues of human ribonuclease 7 are critical for membrane permeability and antimicrobial activity, J. Biol. Chem, vol.282, pp.4626-4633, 2007.

D. Hyatt, G. L. Chen, P. F. Locascio, M. L. Land, F. W. Larimer et al., Prodigal: prokaryotic gene recognition and translation initiation site identification, BMC Bioinformatics, vol.11, p.119, 2010.

R. Ipsen, J. Otte, S. B. Lomholt, and K. B. Qvist, Standardized reaction times used to describe the mechanism of enzyme-induced gelation in whey protein systems, J. Dairy Res, vol.67, pp.403-413, 2000.

A. A. Jadhav, S. I. Khatib, M. A. Harale, S. V. Gadre, and M. T. Williamson, Study of protease enzyme from bacillus species and its application as a contact lens cleanser, Br. Biomed. Bull, vol.2, pp.293-302, 2014.

B. Jan?tová, M. Dra?ková, and L. Vorlová, Effect of Bacillus cereus enzymes on milk quality following ultra high temperature processing, Acta Vet. Brno, vol.75, pp.601-609, 2006.

J. E. Keymer, P. Galajda, C. Muldoon, S. Park, A. et al., Bacterial metapopulations in nanofabricated landscapes, Proc. Natl. Acad. Sci. U.S.A, vol.103, pp.17290-17295, 2006.

K. Kilcullen, A. Teunis, T. G. Popova, and S. G. Popov, Cytotoxic potential of Bacillus cereus strains ATCC 11778 and 14579 against human lung epithelial cells under microaerobic growth conditions, Front. Microbiol, vol.7, p.69, 2016.

H. Korhonen, P. , and A. , Bioactive peptides: production and functionality, Int. Dairy J, vol.16, pp.945-960, 2006.

S. Kumari and P. Sarkar, Bacillus cereus hazard and control in industrial dairy processing environment, Food Control, vol.69, pp.20-29, 2016.

E. Lahov, R. , and W. , Antibacterial and immunostimulating caseinderived substances from milk: casecidin, isracidin peptides, Food Chem. Toxicol, vol.34, pp.131-145, 1996.

J. G. Leblanc, C. Matar, J. C. Valdez, J. Leblanc, P. et al., Immunomodulating effects of peptidic fractions issued from milk fermented with lactobacillus helveticus, J. Dairy Sci, vol.85, pp.2733-2742, 2002.

L. H. Ledenbach, M. , and R. T. , Microbiological spoilage of dairy products, Compendium of the Microbiological Spoilage of Foods and Beverages, pp.41-67, 2009.

R. I. Lehrer, M. Rosenman, S. S. Harwig, R. Jackson, and P. Eisenhauer, Ultrasensitive assays for endogenous antimicrobial polypeptides, J. Immunol. Methods, vol.137, pp.167-173, 1991.

W. Li, G. , and A. , Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences, Bioinformatics, vol.22, pp.1658-1659, 2006.

I. López-expósito, A. Quirós, L. Amigo, R. , and I. , Casein hydrolysates as a source of antimicrobial, antioxidant and antihypertensive peptides, Lait, vol.87, pp.241-249, 2007.

R. Lopez-fandino, A. Olano, N. Corzo, and M. Ramos, Proteolysis during storage of UHT milk: differences between whole and skim milk, J. Dairy Res, vol.60, pp.339-347, 1993.

R. Majed, C. Faille, M. Kallassy, G. , and M. , Bacillus cereus biofilmssame, only different, Front. Microbiol, vol.7, p.1054, 2016.

R. R. Meer, J. Baker, W. Bodyfelt, and M. W. Griffiths, Psychrotrophic Bacillus spp. in fluid milk products: a review, J. Food Prot, vol.54, pp.969-979, 1991.

N. Melachouris and S. L. Tuckey, Properties of a milk-clotting microbial enzyme, J. Dairy Sci, vol.51, pp.87049-87052, 1968.

L. Miclo, E. Roux, M. Genay, E. Brusseaux, C. Poirson et al., Variability of hydrolysis of beta-, alphas1-, and alphas2-caseins by 10 strains of Streptococcus thermophilus and resulting bioactive peptides, J. Agric. Food Chem, vol.60, pp.554-565, 2012.

J. Mihel, M. Sikic, S. Tomic, B. Jeren, and K. Vlahovicek, PSAIA-protein structure and interaction analyzer, BMC Struct. Biol, vol.8, p.21, 2008.

C. D. Nadell, J. B. Xavier, and K. R. Foster, The sociobiology of biofilms, FEMS Microbiol. Rev, vol.33, pp.206-224, 2009.

L. Otvos, The short proline-rich antibacterial peptide family, Cell Mol. Life Sci, vol.59, 2002.

T. N. Petersen, S. Brunak, G. Von-heijne, and H. Nielsen, SignalP 4.0: discriminating signal peptides from transmembrane regions, Nat. Methods, vol.8, pp.785-786, 2011.

L. Quigley, O. O'sullivan, C. Stanton, T. P. Beresford, R. P. Ross et al., The complex microbiota of raw milk, FEMS Microbiol. Rev, vol.37, pp.664-698, 2013.

N. Raddadi, A. Cherif, D. Mora, L. Brusetti, S. Borin et al., The autolytic phenotype of the Bacillus cereus group, J. Appl. Microbiol, vol.99, pp.1070-1081, 2005.

N. D. Rawlings, A. J. Barrett, and R. Finn, Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors, Nucleic Acids Res, vol.44, 2016.

M. A. Riley and J. E. Wertz, Bacteriocins: evolution, ecology, and application, Annu. Rev. Microbiol, vol.56, pp.117-137, 2002.

D. Z. Samar?ija, P. , and T. , Psychrotrophic bacteria and milk and dairy products quality, Mljekarstvo, vol.62, pp.77-95, 2012.

B. Setlow and P. Setlow, Heat inactivation of Bacillus subtilis spores lacking small, acid-soluble spore proteins is accompanied by generation of abasic sites in spore DNA, J. Bacteriol, vol.176, pp.2111-2113, 1994.

J. T. Simpson, K. Wong, S. D. Jackman, J. E. Schein, S. J. Jones et al., ABySS: a parallel assembler for short read sequence data, Genome Res, vol.19, pp.1117-1123, 2009.

S. Spano and J. E. Galan, A Rab32-dependent pathway contributes to Salmonella typhi host restriction, Science, vol.338, pp.960-963, 2012.

R. M. Stubbendieck and P. D. Straight, Multifaceted interfaces of bacterial competition, J. Bacteriol, vol.198, pp.2145-2155, 2016.

R. M. Stubbendieck, C. Vargas-bautista, and P. D. Straight, Bacterial communities: interactions to scale, Front. Microbiol, vol.7, p.1234, 2016.

G. W. Tannock, A special fondness for lactobacilli, Appl. Environ. Microbiol, vol.70, pp.3189-3194, 2004.

M. H. Tempelaars, S. Rodrigues, A. , and T. , Comparative analysis of antimicrobial activities of valinomycin and cereulide, the Bacillus cereus emetic toxin, Appl. Environ. Microbiol, vol.77, pp.2755-2762, 2011.

A. Tewari, A. , and S. , Bacillus cereus food poisoning: international and Indian perspective, J. Food Sci. Technol, vol.52, pp.2500-2511, 2015.

, UniProt: the universal protein knowledgebase, Nucleic Acids Res, vol.45, 2017.

A. M. Vidal, O. D. Rossi, I. L. De-abreu, K. P. Bürger, M. V. Cardoso et al., Detection of Bacillus cereus isolated during ultra high temperature milk production flowchart through random amplified polymorphic DNA polymerase chain reaction, Ciênc. Rural, vol.46, pp.286-292, 2016.

C. Xu, G. Kozlov, K. Wong, K. Gehring, and M. Cygler, Crystal structure of the Salmonella typhimurium effector GtgE, PLoS ONE, vol.11, 2016.

J. Yang, A. Roy, and Y. Zhang, Protein-ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment, Bioinformatics, vol.29, pp.2588-2595, 2013.

J. Yang and Y. Zhang, Protein structure and function prediction using I-TASSER, Curr. Protoc. Bioinformatics, vol.52, pp.81-86, 2015.

Y. Zhang and J. Skolnick, TM-align: a protein structure alignment algorithm based on the TM-score, Nucleic Acids Res, vol.33, pp.2302-2309, 2005.