K. Apel and H. Hirt, REACTIVE OXYGEN SPECIES: Metabolism, Oxidative Stress, and 664 Signal Transduction, Annu. Rev. Plant Biol, vol.55, pp.373-399, 2004.

K. Asada, Production and Scavenging of Reactive Oxygen Species in Chloroplasts and 666, 2006.

W. Fan and X. Dong, Vivo Interaction between NPR1 and Transcription Factor TGA2, 2002.

, Leads to Salicylic Acid-Mediated Gene Activation in Arabidopsis, Plant Cell, vol.14, pp.1377-1389

E. E. Farmer and M. J. Mueller, ROS-Mediated Lipid Peroxidation and RES-Activated, vol.694, 2013.

. Signaling, Annu. Rev. Plant Biol, vol.64, pp.429-450

C. Flors, M. J. Fryer, J. Waring, B. Reeder, U. Bechtold et al., , p.696

M. T. Baker and N. R. , Imaging the production of singlet oxygen in vivo using a new 697 fluorescent sensor, Singlet Oxygen Sensor Green®, J. Exp. Bot, vol.57, pp.1725-1734, 2006.

B. Fode, T. Siemsen, C. Thurow, R. Weigel, and C. Gatz, The Arabidopsis GRAS Protein 699 SCL14 Interacts with Class II TGA Transcription Factors and Is Essential for the Activation of 700 Stress-Inducible Promoters, Plant Cell, vol.20, pp.3122-3135, 2008.

H. A. Frank and R. J. Cogdell, Carotenoids in Photosynthesis, Photochem. Photobiol, vol.63, pp.702-257, 1996.

I. Gadjev, Transcriptomic Footprints Disclose Specificity of Reactive Oxygen Species 704 Signaling in Arabidopsis, Plant Physiol, vol.141, pp.436-445, 2006.

M. Havaux, Carotenoid oxidation products as stress signals in plants, Plant J, vol.79, pp.597-706, 2014.

L. Huang, N. Li, C. Thurow, M. Wirtz, R. Hell et al., Ectopically expressed 708 glutaredoxin ROXY19 negatively regulates the detoxification pathway in Arabidopsis 709 thaliana, BMC Plant Biol, vol.16, pp.200-211, 2016.

X. Johnson, G. Vandystadt, S. Bujaldon, F. A. Wollman, R. Dubois et al., , p.711

D. Béal, A new setup for in vivo fluorescence imaging of photosynthetic activity, 2009.

, Photosynth. Res, vol.102, pp.85-93

M. Karimi, D. Inzé, and A. Depicker, GATEWAY TM vectors for Agrobacterium-mediated 714 plant transformation, Trends Plant Sci, vol.7, pp.193-195, 2002.

F. Katagiri, E. Lam, and N. Chua, Two tobacco DNA-binding proteins with homology 716 26 to the nuclear factor CREB, Nature, vol.340, pp.727-730, 1989.

M. Kesarwani, J. Yoo, D. , and X. , Genetic Interactions of TGA Transcription Factors 718 in the Regulation of Pathogenesis-Related Genes and Disease Resistance in Arabidopsis, 2007.

, Plant Physiol, vol.144, pp.336-346

J. Köster, C. Thurow, K. Kruse, A. Meier, T. Iven et al., , 2012.

-. Xenobiotic and J. Acid, Inducible Signal Transduction Pathways Have Become 722 Interdependent at the Arabidopsis CYP81D11 Promoter, Plant Physiol, vol.159, pp.391-402

S. O. Kotchoni, C. Kuhns, A. Ditzer, H. H. Kirch, and D. Bartels, Over-expression of 724 different aldehyde dehydrogenase genes in Arabidopsis thaliana confers tolerance to 725 abiotic stress and protects plants against lipid peroxidation and oxidative stress, Plant, Cell 726 Environ, vol.29, pp.1033-1048, 2006.

R. Kou?il, E. Wientjes, J. B. Bultema, R. Croce, and E. J. Boekema, High-light vs. low728 light: Effect of light acclimation on photosystem II composition, p.729, 2013.

, Arabidopsis thaliana, Biochim. Biophys. Acta-Bioenerg, vol.1827, pp.411-419

K. Kreuz, R. Tommasini, and E. Martinoia, Old enzymes for a new job. Herbicide 731 detoxification in plants, Plant Physiol, vol.111, pp.349-353, 1996.

A. Krieger-liszkay, C. Fufezan, and A. Trebst, Singlet oxygen production in 733 photosystem II and related protection mechanism, Photosynth. Res, vol.98, pp.551-64, 2008.

E. Lam, Y. Lam, and P. Kam, Binding site requirements and differential representation of 735 TGA factors in nuclear ASF-1 activity, Nucleic Acids Res, vol.23, pp.3778-3785, 1995.

Z. Li, S. Wakao, B. B. Fischer, and K. K. Niyogi, , 2009.

, Annu. Rev. Plant Biol, vol.60, pp.239-260

J. Mano, Reactive carbonyl species: Their production from lipid peroxides, action in 739 environmental stress, and the detoxification mechanism, Plant Physiol. Biochem, vol.59, pp.90-740, 2012.

J. Mano, E. Belles-boix, E. Babiychuk, D. Inzé, Y. Torii et al., , p.742

K. Asada and S. Kushnir, Protection against photooxidative injury of tobacco 743 leaves by 2-alkenal reductase. Detoxication of lipid peroxide-derived reactive carbonyls, 2005.

, Plant Physiol, vol.139, pp.1773-83

M. Matsuo, J. M. Johnson, A. Hieno, M. Tokizawa, M. Nomoto et al., , p.746

J. Obokata, I. Sherameti, Y. Y. Yamamoto, F. D. Böhmer, and R. Oelmüller, High 747 REDOX RESPONSIVE TRANSCRIPTION FACTOR1 Levels Result in Accumulation of Reactive, 2015.

, Oxygen Species in Arabidopsis thaliana Shoots and Roots, Mol. Plant, vol.8, pp.1253-1273

J. L. Montillet, An Abscisic Acid-Independent Oxylipin Pathway Controls Stomatal 750 Closure and Immune Defense in Arabidopsis, PLoS Biol, vol.11, p.1001513, 2013.

J. L. Montillet, J. L. Cacas, L. Garnier, M. H. Montané, T. Douki et al., , p.752

L. Kowalczyk, U. Maciejewska, J. P. Agnel, A. Vial, and C. Triantaphylidès, The 753 upstream oxylipin profile of Arabidopsis thaliana: A tool to scan for oxidative stresses, Plant 754 J, vol.40, pp.439-451, 2004.

S. A. Mousavi, A. Chauvin, F. Pascaud, S. Kellenberger, and E. E. Farmer, , 2013.

, GLUTAMATE RECEPTOR-LIKE genes mediate leaf-to-leaf wound signalling, Nature, vol.500, p.422

J. Moustaka, G. Tanou, I. D. Adamakis, E. P. Eleftheriou, and M. Moustakas, Leaf age758 dependent photoprotective and antioxidative response mechanisms to paraquat-induced 759 oxidative stress in arabidopsis thaliana, Int. J. Mol. Sci, vol.16, pp.13989-14006, 2015.

M. J. Mueller and S. Berger, Reactive electrophilic oxylipins: Pattern recognition and 761 signalling, Phytochemistry, vol.70, pp.1511-1521, 2009.

S. Mueller, B. Hilbert, K. Dueckershoff, T. Roitsch, M. Krischke et al., General Detoxification and Stress Responses Are Mediated by Oxidized Lipids 764 through TGA Transcription Factors in Arabidopsis, Plant Cell, vol.20, pp.768-785, 2008.

I. Ndamukong, A. Abdallat, . Al, C. Thurow, B. Fode et al., SA-inducible Arabidopsis glutaredoxin interacts with TGA factors and suppresses, p.28, 2007.

, responsive PDF1.2 transcription, Plant J, vol.50, pp.128-139

R. Oguchi, K. Hikosaka, and T. Hirose, Does the photosynthetic light-acclimation need 769 change in leaf anatomy?, Plant, Cell Environ, vol.26, pp.505-512, 2003.

D. R. Ort, When there is too much light regulate thermal dissipation of excess regulating 771 thermal energy dissipation, Plant Physiol, vol.125, pp.29-32, 2001.

F. Ramel, S. Birtic, S. Cuine, C. Triantaphylides, J. Ravanat et al., , 2012.

, Chemical Quenching of Singlet Oxygen by Carotenoids in Plants, Plant Physiol, vol.158, pp.1267-774

F. Ramel, S. Birtic, C. Ginies, L. Soubigou-taconnat, C. Triantaphylides et al., Carotenoid oxidation products are stress signals that mediate gene responses to 777 singlet oxygen in plants, Proc. Natl. Acad. Sci, vol.109, pp.5535-5540, 2012.

F. Ramel, B. Ksas, E. Akkari, A. S. Mialoundama, F. Monnet et al., , 2013.

, Arabidopsis chlorina1 Mutant to Singlet Oxygen, Plant Cell, vol.25, pp.1445-1462

F. Ramel, B. Ksas, E. Akkari, A. S. Mialoundama, F. Monnet et al., , 2013.

, Arabidopsis chlorina1 Mutant to Singlet Oxygen, Plant Cell, vol.25, pp.1445-1462

F. Ramel, C. Sulmon, A. A. Serra, G. Gouesbet, C. et al., Xenobiotic sensing and 785 signalling in higher plants, J. Exp. Bot, vol.63, pp.3999-4014, 2012.

N. Ratnakaran, Identification of the role of Arabidopsis ATAF-type NAC transcription 787 factors in plant stress and development. (Ph.D. Dissertation). Georg-August University, vol.788, 2014.

J. Redman, J. Whitcraft, C. Johnslon, and J. Arias, Abiotic and biotic stress 790 differentially stimulate as-1 element activity in Arabidopsis, Plant Cell Rep, vol.21, pp.180-185, 2002.

D. E. Riechers, K. Kreuz, and Q. Zhang, Detoxification without Intoxication: Herbicide 792, 2010.

, ALDHs and SDRs enzymes and of the glucosyl and glutathione transferases in the xenobiotic 954 detoxification pathway assures the elimination of the RCS produced under stress conditions

, Reducing RCS accumulation limits the positive feedback on lipid peroxidation and lead to 956 tolerance rather than cell death

, Supplemental Figure 1: ?-cc induction of ANAC genes is independent of NPR1

, Supports Figure 2

, CTRL, which were set to 1) in wt, and npr1 plants under control conditions or 962 exposed to ?-cc, measured by RT-qPCR. PR1 expression level in the npr1 mutant line is significantly 963 lower than in wt (P < 0,01). ANAC102, ANAC032, ATAF1/ANAC002 and ATAF2/ANAC081 expression 964 levels in ?-cc treated plant are significantly different from expression in the relative wt or npr1 965 control, PR1, ANAC102, ANAC032, ATAF1/ANAC002 and ATAF2/ANAC081 expression levels (relative to wt 961 control levels

, Supplemental Figure 2: Effect of cycloheximide on ANAC102 induction by ?-cc

, Supports Figure 10

, The ANAC102 translational reporter described in Figure 10 was used I this experiment. Stain after 971 4-h treatment with water (H2O), ?-cc (?-cc), cycloheximide (CHX) or ?-cc and CHX and overnight 972 development of the staining

, Supplemental Figure 3: The resilience of young leaves to excessive light depends on SCL14

, Supports Figure 11

, Leaves were 978 detached from the plants after the stress and placed, by age, on a flat surface from the 4th to the 979 18-20th youngest leaf. (B) Leaf bleaching (on the left) and maximum quantum yield imaging of 980 PSII photochemistry determined by the Fv/Fm chlorophyll fluorescence ratio (on the right) of wt, 981 scl14 and of OE:SCL14 detached leaves after high light stress. The color palette shows signal 982 intensity from low (dark blue) to high (red) values. (C) Leaf bleaching (on the left) and lipid 983 peroxidation monitored by autoluminescence imaging (on the right) of wt, scl14 and of OE:SCL14 984 detached leaves after high light stress. The color palette shows signal intensity from low, Leaf bleaching of typical wt, scl14 and OE:SCL14 plants after high light stress

, Supplemental Table 1: Primers used in the work, vol.988, p.989