M. F. Hohmann-marriott and R. E. Blankenship, Evolution of photosynthesis, Annu. Rev. Plant Biol, vol.62, pp.515-548, 2011.

Y. Umena, K. Kawakami, J. R. Shen, and N. Kamiya, Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 A, Nature, vol.473, pp.55-60, 2011.

H. Ago, H. Adachi, Y. Umena, T. Tashiro, K. Kawakami et al., Novel Features of Eukaryotic Photosystem II Revealed by Its Crystal Structure Analysis from a Red Alga, J. Biol. Chem, vol.291, pp.5676-5687, 2016.

X. Wei, X. Su, P. Cao, X. Liu, W. Chang et al., Structure of spinach photosystem IILHCII supercomplex at 3.2 A resolution, Nature, vol.534, pp.69-74, 2016.

L. S. Van-bezouwen, S. Caffarri, R. S. Kale, R. Kouril, A. W. Thunnissen et al., Subunit and chlorophyll organization of the plant photosystem II supercomplex, Nat. Plants, 2017.
URL : https://hal.archives-ouvertes.fr/cea-01896536

S. Jansson, A guide to the Lhc genes and their relatives in Arabidopsis, Trends Plant Sci, vol.4, pp.236-240, 1999.

C. Buchel, Evolution and function of light harvesting proteins, J. Plant Physiol, vol.172, pp.62-75, 2015.

Z. Liu, H. Yan, K. Wang, T. Kuang, J. Zhang et al., Crystal structure of spinach major light-harvesting complex at 2.72 A resolution, Nature, vol.428, pp.287-292, 2004.

X. Pan, Z. Liu, M. Li, and W. Chang, Architecture and function of plant light-harvesting complexes II, Curr. Opin. Struct. Biol, vol.23, pp.515-525, 2013.
DOI : 10.1016/j.sbi.2013.04.004

M. Ballottari, J. Girardon, L. Dall'osto, and R. Bassi, Evolution and functional properties of photosystem II light harvesting complexes in eukaryotes, Biochim. Biophys. Acta-Bioenerg, vol.1817, pp.143-157, 2012.

X. Su, J. Ma, X. Wei, P. Cao, D. Zhu et al., Structure and assembly mechanism of plant C2S2M2-type PSII-LHCII supercomplex, Science, vol.357, pp.815-820, 2017.
DOI : 10.1126/science.aan0327

URL : http://science.sciencemag.org/content/sci/357/6353/815.full.pdf

S. Caffarri, T. Tibiletti, R. C. Jennings, and S. Santabarbara, A comparison between plant photosystem I and photosystem II architecture and functioning, Curr. Protein Pept. Sci, vol.15, pp.296-331, 2014.
DOI : 10.2174/1389203715666140327102218

URL : http://europepmc.org/articles/pmc4030627?pdf=render

J. L. Bowman, S. K. Floyd, and K. Sakakibara, Green genes-comparative genomics of the green branch of life, Cell, vol.129, pp.229-234, 2007.

G. F. Peter and J. P. Thornber, Biochemical composition and organization of higher plant photosystem II LIGHTHARVESTING PIGMENT-PROTEINS, J. Biol. Chem, vol.266, pp.16745-16754, 1991.

R. Kouril, E. Wientjes, J. B. Bultema, R. Croce, and E. J. Boekema, High-light vs. low-light: Effect of light acclimation on photosystem II composition and organization in Arabidopsis thaliana, Biochim. Biophys. Acta-Bioenerg, vol.1827, pp.411-419, 2013.

J. P. Dekker and E. J. Boekema, Supramolecular organization of thylakoid membrane proteins in green plants, Biochim. Biophys. Acta-Bioenerg, vol.1706, pp.12-39, 2005.

S. Caffarri, R. Kouril, S. Kereiche, E. J. Boekema, and R. Croce, Functional architecture of higher plant photosystem II supercomplexes, Embo J, vol.28, pp.3052-3063, 2009.
DOI : 10.1038/emboj.2009.232

URL : http://emboj.embopress.org/content/28/19/3052.full.pdf

R. Tokutsu, N. Kato, K. H. Bui, T. Ishikawa, and J. Minagawa, Revisiting the supramolecular organization of photosystem II in Chlamydomonas reinhardtii, J. Biol. Chem, vol.287, pp.31574-31581, 2012.

B. Drop, M. Webber-birungi, S. K. Yadav, A. Filipowicz-szymanska, F. Fusetti et al., Light-harvesting complex II (LHCII) and its supramolecular organization in Chlamydomonas reinhardtii, Biochim. Biophys. Acta-Bioenerg, vol.1837, pp.63-72, 2014.
DOI : 10.1016/j.bbabio.2013.07.012

URL : https://doi.org/10.1016/j.bbabio.2013.07.012

E. J. Boekema, H. Van-roon, J. F. Van-breemen, and J. P. Dekker, Supramolecular organization of photosystem II and its light-harvesting antenna in partially solubilized photosystem II membranes, Eur. J. Biochem, vol.266, pp.444-452, 1999.

L. Nosek, D. Semchonok, E. J. Boekema, P. Ilik, and R. Kouril, Structural variability of plant photosystem II megacomplexes in thylakoid membranes, Plant J, vol.89, pp.104-111, 2017.

B. Hankamer, J. Nield, D. Zheleva, E. Boekema, S. Jansson et al., Isolation and biochemical characterisation of monomeric and dimeric photosystem II complexes from spinach and their relevance to the organisation of photosystem II in vivo, Eur. J. Biochem, vol.243, pp.422-429, 1997.

P. Dainese and R. Bassi, Subunit Stoichiometry of the Chloroplast Photosystem-II Antenna System and Aggregation State of the Component Chlorophyll-a/b Binding Proteins, J. Biol. Chem, vol.266, pp.8136-8142, 1991.

S. Caffarri, R. Croce, L. Cattivelli, and R. Bassi, A look within LHCII: Differential analysis of the Lhcbl-3 complexes building the major trimeric antenna complex of higher-plant photosynthesis, Biochemistry, vol.43, pp.9467-9476, 2004.

P. Galka, S. Santabarbara, T. T. Khuong, H. Degand, P. Morsomme et al., Functional analyses of the plant photosystem I-light-harvesting complex II supercomplex reveal that light-harvesting complex II loosely bound to photosystem II is a very efficient antenna for photosystem I in state II, Plant Cell, vol.24, pp.2963-2978, 2012.

A. G. Koziol, T. Borza, K. Ishida, P. Keeling, R. W. Lee et al., Tracing the evolution of the light-harvesting antennae in chlorophyll a/b-containing organisms, Plant Physiol, vol.143, pp.1802-1816, 2007.

J. Engelken and H. Brinkmann, Adamska, I. Taxonomic distribution and origins of the extended LHC (lightharvesting complex) antenna protein superfamily, BMC Evol. Biol, vol.10, p.233, 2010.

M. H. Montane and K. Kloppstech, The family of light-harvesting-related proteins (LHCs, ELIPs, HLIPs): was the harvesting of light their primary function?, Gene, vol.258, pp.1-8, 2000.

H. Staleva, J. Komenda, M. K. Shukla, V. Slouf, R. Kana et al., Mechanism of photoprotection in the cyanobacterial ancestor of plant antenna proteins, Nat. Chem. Biol, vol.11, pp.287-291, 2015.

E. Chinn, J. Silverthorne, and A. Hohtola, Light-regulated and organ-specific expression of types 1, 2, and 3 light-harvesting complex b mRNAs in Ginkgo biloba, Plant Physiol, vol.107, pp.593-602, 1995.

D. Elrad and A. R. Grossman, A genome's-eye view of the light-harvesting polypeptides of Chlamydomonas reinhardtii, Curr Genet, vol.45, pp.61-75, 2004.

A. Alboresi, S. Caffarri, F. Nogue, R. Bassi, and T. Morosinotto, In silico and biochemical analysis of Physcomitrella patens photosynthetic antenna: identification of subunits which evolved upon land adaptation, PLoS ONE, vol.3, p.2033, 2008.

R. Kouril, L. Nosek, J. Bartos, E. J. Boekema, and P. Ilik, Evolutionary loss of light-harvesting proteins Lhcb6 and Lhcb3 in major land plant groups-break-up of current dogma, New Phytol, vol.210, pp.808-814, 2016.

J. Minagawa and Y. Takahashi, Structure, function and assembly of Photosystem II and its light-harvesting proteins, Photosynth. Res, vol.82, pp.241-263, 2004.

A. Natali and R. Croce, Characterization of the major light-harvesting complexes (LHCBM) of the green alga Chlamydomonas reinhardtii, PLoS One, vol.10, p.119211, 2015.

A. V. Nguyen, S. R. Thomas-hall, A. Malnoe, M. Timmins, J. H. Mussgnug et al., Transcriptome for Photobiological Hydrogen Production Induced by Sulfur Deprivation in the Green Alga Chlamydomonas reinhardtii, Eukaryot. Cell, vol.7, pp.1965-1979, 2008.

S. Grewe, M. Ballottari, M. Alcocer, C. ;-d'andrea, O. Blifernez-klassen et al., Light-Harvesting Complex Protein LHCBM9 Is Critical for Photosystem II Activity and Hydrogen Production in Chlamydomonas reinhardtii, Plant Cell, vol.26, pp.1598-1611, 2014.

P. Ferrante, M. Ballottari, G. Bonente, and G. Giuliano, Bassi, R. LHCBM1 and LHCBM2/7 polypeptides, components of major LHCII complex, have distinct functional roles in photosynthetic antenna system of Chlamydomonas reinhardtii, J. Biol. Chem, vol.287, pp.16276-16288, 2012.

H. Takahashi, M. Iwai, Y. Takahashi, and J. Minagawa, Identification of the mobile light-harvesting complex II polypeptides for state transitions in Chlamydomonas reinhardtii, Proc. Natl. Acad. Sci. USA, vol.103, pp.477-482, 2006.

L. Girolomoni, P. Ferrante, S. Berteotti, G. Giuliano, R. Bassi et al., The function of LHCBM4/6/8 antenna proteins in Chlamydomonas reinhardtii, J. Exp. Bot, vol.68, pp.627-641, 2017.

D. Elrad, K. K. Niyogi, and A. R. Grossman, A major light-harvesting polypeptide of photosystem II functions in thermal dissipation, Plant Cell, vol.14, pp.1801-1816, 2002.

A. Dereeper, V. Guignon, G. Blanc, S. Audic, S. Buffet et al., fr: robust phylogenetic analysis for the nonspecialist, Nucleic Acids Res, vol.36, pp.465-474, 2008.
URL : https://hal.archives-ouvertes.fr/lirmm-00324099

S. M. Chaw, C. C. Chang, H. L. Chen, and W. H. Li, Dating the monocot-dicot divergence and the origin of core eudicots using whole chloroplast genomes, J. Mol. Evol, vol.58, pp.424-441, 2004.

S. Caffarri, S. Frigerio, E. Olivieri, P. G. Righetti, and R. Bassi, Differential accumulation of Lhcb gene products in thylakoid membranes of Zea mays plants grown under contrasting light and temperature conditions, Proteomics, vol.5, pp.758-768, 2005.

S. Frigerio, C. Campoli, S. Zorzan, L. I. Fantoni, C. Crosatti et al., Photosynthetic antenna size in higher plants is controlled by the plastoquinone redox state at the post-transcriptional rather than transcriptional level, J. Biol. Chem, vol.282, pp.29457-29469, 2007.

R. Remelli, C. Varotto, D. Sandona, R. Croce, and R. Bassi, Chlorophyll binding to monomeric lightharvesting complex. A mutation analysis of chromophore-binding residues, J. Biol. Chem, vol.274, pp.33510-33521, 1999.
DOI : 10.1074/jbc.274.47.33510

URL : http://www.jbc.org/content/274/47/33510.full.pdf

S. Hobe, R. Förster, J. Klingler, and H. Paulsen, N-proximal sequence motif in light-harvesting chlorophyll a/bbinding protein is essential for the trimerization of light-harvesting chlorophyll a/b complex, Biochemistry, vol.34, pp.10224-10228, 1995.

E. J. Stauber, A. Fink, C. Markert, O. Kruse, U. Johanningmeier et al., Proteomics of Chlamydomonas reinhardtii light-harvesting proteins, Eukaryot. Cell, vol.2, pp.978-994, 2003.
DOI : 10.1016/j.plaphy.2004.09.008

S. E. Clark and G. K. Lamppa, Determinants for cleavage of the chlorophyll a/b binding protein precursor: a requirement for a basic residue that is not universal for chloroplast imported proteins, J. Cell Biol, vol.114, pp.681-688, 1991.

R. Standfuss, A. Van-scheltinga, M. Lamborghini, and W. Kuhlbrandt, Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5A resolution, Embo J, vol.24, pp.919-928, 2005.

S. Jansson, The light-harvesting chlorophyll a/b-binding proteins, Biochim. Biophys. Acta, vol.1184, pp.1-19, 1994.
DOI : 10.1016/0005-2728(94)90148-1

W. Liu, W. Tu, Y. Liu, R. Sun, C. Liu et al., The N-terminal domain of Lhcb proteins is critical for recognition of the LHCII kinase, Biochim. Biophys. Acta-Bioenerg, vol.1857, pp.79-88, 2016.

M. Grieco, A. Jain, I. Ebersberger, and M. Teige, An evolutionary view on thylakoid protein phosphorylation uncovers novel phosphorylation hotspots with potential functional implications, J. Exp. Bot, vol.67, pp.3883-3896, 2016.
DOI : 10.1093/jxb/erw164

URL : https://academic.oup.com/jxb/article-pdf/67/13/3883/18073241/erw164.pdf

N. Sugiyama, H. Nakagami, K. Mochida, A. Daudi, M. Tomita et al., Large-scale phosphorylation mapping reveals the extent of tyrosine phosphorylation in Arabidopsis, Mol. Syst. Biol, 2008.

Z. Yang, G. Guo, M. Zhang, C. Y. Liu, Q. Hu et al., Stable isotope metabolic labeling-based quantitative phosphoproteomic analysis of Arabidopsis mutants reveals ethyleneregulated time-dependent phosphoproteins and putative substrates of constitutive triple response 1 kinase, Mol. Cell. Proteomics, vol.12, pp.3559-3582, 2013.

X. Chen, W. L. Chan, F. Y. Zhu, and C. Lo, Phosphoproteomic analysis of the non-seed vascular plant model Selaginella moellendorffii, Proteome Sci, vol.12, p.16, 2014.

B. Ingelsson and A. V. Vener, Phosphoproteomics of Arabidopsis chloroplasts reveals involvement of the STN7 kinase in phosphorylation of nucleoid protein pTAC16, FEBS Lett, vol.586, pp.1265-1271, 2012.

A. Crepin and S. Caffarri, The specific localizations of phosphorylated Lhcb1 and Lhcb2 isoforms reveal the role of Lhcb2 in the formation of the PSI-LHCII supercomplex in Arabidopsis during state transitions, Biochim. Biophys. Acta-Bioenerg, vol.1847, pp.1539-1548, 2015.

P. Longoni, D. Douchi, F. Cariti, G. Fucile, and M. Goldschmidt-clermont, Phosphorylation of the LightHarvesting Complex II Isoform Lhcb2 Is Central to State Transitions, Plant Physiol, vol.169, pp.2874-2883, 2015.

C. Leoni, M. Pietrzykowska, A. Z. Kiss, M. Suorsa, L. R. Ceci et al., Very rapid phosphorylation kinetics suggest a unique role for Lhcb2 during state transitions in Arabidopsis, Plant J, vol.76, pp.236-246, 2013.
DOI : 10.1111/tpj.12297

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1111/tpj.12297

J. Standfuss and W. Kuhlbrandt, The three isoforms of the light-harvesting complex II-Spectroscopic features, trimer formation, and functional roles, J. Biol. Chem, vol.279, pp.36884-36891, 2004.

L. Dall'osto, S. Cazzaniga, M. Bressan, D. Palecek, K. Zidek et al., Two mechanisms for dissipation of excess light in monomeric and trimeric light-harvesting complexes, Nat. Plants, vol.3, p.17033, 2017.

A. V. Ruban, R. Berera, C. Ilioaia, I. Van-stokkum, J. Kennis et al., Identification of a mechanism of photoprotective energy dissipation in higher plants, Nature, vol.450, pp.575-578, 2007.

S. Papadatos, A. C. Charalambous, and V. Daskalakis, A pathway for protective quenching in antenna proteins of Photosystem II, Sci. Rep, 2017.

B. Van-oort, A. Van-hoek, A. V. Ruban, and H. Van-amerongen, Aggregation of light-harvesting complex II leads to formation of efficient excitation energy traps in monomeric and trimeric complexes, FEBS Lett, vol.581, pp.3528-3560, 2007.

G. Jackowski and S. Jansson, Characterization of photosystem II antenna complexes separated by nondenaturing isoelectric focusing, Z. Naturforsch. C, vol.53, pp.841-848, 1998.
DOI : 10.1515/znc-1998-9-1010

J. T. Damkjaer, S. Kereiche, M. P. Johnson, L. Kovacs, A. Z. Kiss et al., The photosystem II light-harvesting protein Lhcb3 affects the macrostructure of photosystem II and the rate of state transitions in Arabidopsis, Plant Cell, vol.21, pp.3245-3256, 2009.

L. Kovacs, J. Damkjaer, S. Kereiche, C. Ilioaia, A. V. Ruban et al., Lack of the light-harvesting complex CP24 affects the structure and function of the grana membranes of higher plant chloroplasts, Plant Cell, vol.18, pp.3106-3120, 2006.

M. Adamiec, K. Gibasiewicz, R. Lucinski, W. Giera, P. Chelminiak et al., Excitation energy transfer and charge separation are affected in Arabidopsis thaliana mutants lacking light-harvesting chlorophyll a/b binding protein Lhcb3, J. Photochem. Photobiol. B, vol.153, pp.423-428, 2015.
DOI : 10.1016/j.jphotobiol.2015.11.002

P. Xu, L. M. Roy, and R. Croce, Functional organization of photosystem II antenna complexes: CP29 under the spotlight, Biochim. Biophys. Acta-Bioenerg, vol.1858, pp.815-822, 2017.

M. Ballottari, L. Osto, T. Morosinotto, and R. Bassi, Contrasting behavior of higher plant photosystem I and II antenna systems during acclimation, J. Biol. Chem, vol.282, pp.8947-8958, 2007.
DOI : 10.1074/jbc.m606417200

URL : http://www.jbc.org/content/282/12/8947.full.pdf

N. Betterle, M. Ballottari, S. Zorzan, S. De-bianchi, S. Cazzaniga et al., Light-induced dissociation of an antenna hetero-oligomer is needed for non-photochemical quenching induction, J. Biol. Chem, vol.284, pp.15255-15266, 2009.
DOI : 10.1074/jbc.m808625200

URL : http://www.jbc.org/content/284/22/15255.full.pdf

C. Gerotto, C. Franchin, G. Arrigoni, and T. Morosinotto, In Vivo Identification of Photosystem II Light Harvesting Complexes Interacting with PHOTOSYSTEM II SUBUNIT S, Plant Physiol, vol.168, pp.1747-1761, 2015.

V. Correa-galvis, G. Poschmann, M. Melzer, K. Stuhler, and P. Jahns, PsbS interactions involved in the activation of energy dissipation in Arabidopsis, Nat. Plants, 2016.

J. F. Allen, Protein phosphorylation in regulation of photosynthesis, Biochim. Biophys. Acta, vol.1098, pp.275-335, 1992.

F. A. Wollman, State transitions reveal the dynamics and flexibility of the photosynthetic apparatus, Embo J, vol.20, pp.3623-3630, 2001.

M. Tikkanen, M. Piippo, M. Suorsa, S. Sirpio, P. Mulo et al., State transitions revisited-a buffering system for dynamic low light acclimation of Arabidopsis, Plant Mol. Biol, vol.62, pp.779-793, 2006.

J. D. Rochaix, Regulation and dynamics of the light-harvesting system, Annu. Rev. Plant Biol, vol.65, pp.287-309, 2014.

M. Goldschmidt-clermont and R. Bassi, Sharing light between two photosystems: mechanism of state transitions, Curr. Opin. Plant Biol, vol.25, pp.71-78, 2015.

N. Depege, S. Bellafiore, and J. D. Rochaix, Role of chloroplast protein kinase Stt7 in LHCII phosphorylation and state transition in Chlamydomonas, Science, vol.299, pp.1572-1577, 2003.

S. Bellafiore, F. Barneche, G. Peltier, and J. D. Rochaix, State transitions and light adaptation require chloroplast thylakoid protein kinase STN7, Nature, vol.433, pp.892-895, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00015603

L. Quiniou, C. Van-oort, B. Drop, B. Van-stokkum, I. H. Croce et al., The High Efficiency of Photosystem I in the Green Alga Chlamydomonas reinhardtii Is Maintained after the Antenna Size Is Substantially Increased by the Association of Light-harvesting Complexes II, J. Biol. Chem, vol.290, pp.30587-30595, 2015.

S. Santabarbara, T. Tibiletti, W. Remelli, and S. Caffarri, Kinetics and heterogeneity of energy transfer from light harvesting complex II to photosystem I in the supercomplex isolated from Arabidopsis, Phys. Chem. Chem. Phys, vol.19, pp.9210-9222, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02020451

A. Shapiguzov, B. Ingelsson, I. Samol, C. Andres, F. Kessler et al., The PPH1 phosphatase is specifically involved in LHCII dephosphorylation and state transitions in Arabidopsis, Proc. Natl. Acad. Sci. USA, vol.107, pp.4782-4789, 2010.

M. Pribil, P. Pesaresi, A. Hertle, R. Barbato, and D. Leister, Role of Plastid Protein Phosphatase TAP38 in LHCII Dephosphorylation and Thylakoid Electron Flow, PLoS Biol, 2010.

M. Tikkanen, M. Grieco, S. Kangasjarvi, and E. M. Aro, Thylakoid protein phosphorylation in higher plant chloroplasts optimizes electron transfer under fluctuating light, Plant Physiol, vol.152, pp.723-758, 2010.

O. Vallon, F. A. Wollman, and J. Olive, Lateral distribution ofthe main protein complexes of the photosynthetic apparatus in Chlamydomonas reinhardtii and in spinach: And immunocytochemical study using intact thylakoid membranes and a PS II enriched membrane preparation, Photobiochem. Photobiophys, vol.12, pp.203-220, 1986.

M. Iwai, Y. Takahashi, and J. Minagawa, Molecular remodeling of photosystem II during state transitions in Chlamydomonas reinhardtii, Plant Cell, vol.20, pp.2177-2189, 2008.

R. Bassi, F. Rigoni, R. Barbato, and G. M. Giacometti, Light-harvesting chlorophyll a/b proteins (LHCII) populations in phosphorylated membranes, Biochim. Biophys. Acta, vol.936, pp.29-38, 1988.

C. Unlu, B. Drop, R. Croce, and H. Van-amerongen, State transitions in Chlamydomonas reinhardtii strongly modulate the functional size of photosystem II but not of photosystem I, Proc. Natl. Acad. Sci. USA, vol.111, pp.3460-3465, 2014.

G. Allorent, R. Tokutsu, T. Roach, G. Peers, P. Cardol et al., A dual strategy to cope with high light in Chlamydomonas reinhardtii, Plant Cell, vol.25, pp.545-557, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00796520

N. R. Mekala, M. Suorsa, M. Rantala, E. M. Aro, and M. Tikkanen, Plants Actively Avoid State Transitions upon Changes in Light Intensity: Role of Light-Harvesting Complex II Protein Dephosphorylation in High Light, Plant Physiol, vol.168, pp.721-755, 2015.

T. Tibiletti, P. Auroy, G. Peltier, and S. Caffarri, Chlamydomonas reinhardtii PsbS protein is functional and accumulates rapidly and transiently under high light, Plant Physiol, 2016.
URL : https://hal.archives-ouvertes.fr/cea-02137065

B. Drop, K. N. Yadav, E. J. Boekema, and R. Croce, Consequences of state transitions on the structural and functional organization of photosystem I in the green alga Chlamydomonas reinhardtii, Plant J, vol.78, pp.181-191, 2014.

R. Kouril, A. Zygadlo, A. A. Arteni, C. D. De-wit, J. P. Dekker et al., Structural characterization of a complex of photosystem I and light-harvesting complex II of Arabidopsis thaliana, Biochemistry, vol.44, pp.10935-10940, 2005.

A. J. Bell, L. K. Frankel, and T. M. Bricker, High Yield Non-detergent Isolation of Photosystem I-Lightharvesting Chlorophyll II Membranes from Spinach Thylakoids: IMPLICATIONS FOR THE ORGANIZATION OF THE PS I ANTENNAE IN HIGHER PLANTS, J. Biol. Chem, vol.290, pp.18429-18437, 2015.

S. L. Benson, P. Maheswaran, M. A. Ware, C. N. Hunter, P. Horton et al., An intact light harvesting complex I antenna system is required for complete state transitions in Arabidopsis, Nat. Plants, 2015.

K. N. Yadav, D. A. Semchonok, L. Nosek, R. Kouril, G. Fucile et al., Supercomplexes of plant photosystem I with cytochrome b6f, light-harvesting complex II and NDH, Biochim. Biophys. Acta-Bioenerg, vol.1858, pp.12-20, 2017.

C. Lunde, P. E. Jensen, A. Haldrup, J. Knoetzel, and H. V. Scheller, The PSI-H subunit of photosystem I is essential for state transitions in plant photosynthesis, Nature, vol.408, pp.613-615, 2000.

S. Zhang and H. V. Scheller, Light-harvesting complex II binds to several small subunits of photosystem I, J. Biol. Chem, vol.279, pp.3180-3187, 2004.

A. N. Melkozernov, J. Kargul, S. Lin, J. Barber, and R. E. Blankenship, Spectral and kinetic analysis of the energy coupling in the PSI-LHC I supercomplex from the green alga Chlamydomonas reinhardtii at 77 K, Photosynth. Res, vol.86, pp.203-215, 2005.

K. Gibasiewicz, A. Szrajner, J. A. Ihalainen, M. Germano, J. P. Dekker et al., Characterization of low-energy chlorophylls in the PSI-LHCI supercomplex from Chlamydomonas reinhardtii. A site-selective fluorescence study, J. Phys. Chem. B, vol.109, pp.21180-21186, 2005.

C. W. Mullineaux, Function and evolution of grana, Trends Plant Sci, vol.10, pp.521-525, 2005.
DOI : 10.1016/j.tplants.2005.09.001

J. M. Anderson, W. S. Chow, and J. De-las-rivas, Dynamic flexibility in the structure and function of photosystem II in higher plant thylakoid membranes: the grana enigma, Photosynth. Res, vol.98, pp.575-587, 2008.

S. Lemeille, M. V. Turkina, A. V. Vener, and J. Rochaix, Stt7-dependent phosphorylation during state transitions in the green alga Chlamydomonas reinhardtii, Mol. Cell. Proteomics, vol.9, pp.1281-1295, 2010.

M. Pietrzykowska, M. Suorsa, D. A. Semchonok, M. Tikkanen, E. J. Boekema et al., The light-harvesting chlorophyll a/b binding proteins Lhcb1 and Lhcb2 play complementary roles during state transitions in Arabidopsis, Plant Cell, vol.26, pp.3646-3660, 2014.
DOI : 10.1105/tpc.114.127373

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4213150

A. Verhoeven, A. Osmolak, P. Morales, and J. Crow, Seasonal changes in abundance and phosphorylation status of photosynthetic proteins in eastern white pine and balsam fir, Tree Physiol, vol.29, pp.361-374, 2009.

A. S. Verhoeven, A. Kertho, and M. Nguyen, Characterization of light-dependent regulation of state transitions in gymnosperms, Tree Physiol, vol.36, pp.325-334, 2016.

J. Kargul, M. V. Turkina, J. Nield, S. Benson, A. V. Vener et al., Light-harvesting complex II protein CP29 binds to photosystem I of Chlamydomonas reinhardtii under State 2 conditions, Febs J, vol.272, pp.4797-4806, 2005.
DOI : 10.1111/j.1742-4658.2005.04894.x

R. Tokutsu, M. Iwai, and J. Minagawa, CP29, a monomeric light-harvesting complex II protein, is essential for state transitions in Chlamydomonas reinhardtii, J. Biol. Chem, vol.284, pp.7777-7782, 2009.

H. Takahashi, A. Okamuro, J. Minagawa, and Y. Takahashi, Biochemical characterization of photosystem Iassociated light-harvesting complexes I and II isolated from state 2 cells of Chlamydomonas reinhardtii, Plant Cell Physiol, vol.55, pp.1437-1449, 2014.

A. Nilsson, D. Stys, T. Drakenberg, M. D. Spangfort, S. Forsen et al., Phosphorylation controls the three-dimensional structure of plant light harvesting complex II, J. Biol. Chem, vol.272, pp.18350-18357, 1997.

C. Dockter, A. H. Muller, C. Dietz, A. Volkov, Y. Polyhach et al., Rigid core and flexible terminus: structure of solubilized light-harvesting chlorophyll a/b complex (LHCII) measured by EPR, J. Biol. Chem, vol.287, pp.2915-2925, 2012.

N. Fehr, C. Dietz, Y. Polyhach, T. Hagens, G. Jeschke et al., Modeling of the N-terminal Section and the Lumenal Loop of Trimeric Light Harvesting Complex II (LHCII) by Using EPR, J. Biol. Chem, vol.290, pp.26007-26020, 2015.

J. H. Ding, N. Li, M. L. Wang, Y. Zhang, S. Q. Lu et al., The impact of N-terminal phosphorylation on LHCII conformation in state transition, Acta Mech. Sinica, vol.30, pp.447-456, 2014.