, Tritium and Other Radionuclide Labeled Organic Compounds Incorporated in Genetic Material, National Council on Radiation Protection and Measurements, vol.63, 1979.

M. I. Balonov, K. N. Muksinova, and G. S. Mushkacheva, Tritium radiobiological effects in mammals: review of experiments of the last decade in Russia, Health Phys, vol.65, pp.713-726, 1993.

E. Bocian, B. Ziemb-zak, O. Rosiek, and J. Sablinski, Chromosome aberrations in human lymphocytes exposed to tritiated water in vitro, Curr. Top. Radiat. Res. Q, vol.12, pp.168-181, 1978.

J. Cleaver and H. Burki, DNA damage and repair from 3 H and 14 C incorporated in macromolecules, Br. J. Radiol, vol.47, p.739, 1974.

J. Cleaver, G. Thomas, and H. Burki, Biological damage from intranuclear tritium: DNA strand breaks and their repair, Science, vol.177, pp.996-998, 1972.

R. Painter and B. Young, Repair replication induced by 3 H incorporated into HeLa DNA, Mutat. Res, vol.22, pp.203-206, 1974.

A. M. Ueno, I. Furuno-fukushi, and H. Matsudaira, Induction of cell killing, micronuclei, and mutation to 6-thioguanine resistance after exposure to low-dose-rate gamma rays and tritiated water in cultured mammalian cells (L5178Y), Radiat. Res, vol.91, pp.447-456, 1982.

N. Vulpis, The induction of chromosome aberrations in human lymphocytes by in vitro irradiation with beta particles from tritiated water, Radiat. Res, vol.97, pp.511-518, 1984.

M. Yanokura, K. Takase, K. Yamamoto, and H. Teraoka, Cell death and cell-cycle arrest induced by incorporation of [ 3 H]thymidine into human haemopoietic cell lines, Int. J. Radiat. Biol, vol.76, pp.295-303, 2000.

H. Burki and E. Moustacchi, Tritium-induced lethal and genetic changes in Saccharomyces cerevisiae, Radiat. Res, vol.71, pp.635-640, 1977.

D. P. Morrison, R. V. Osborne, and P. Unrau, Beta-ray-induced gene conversion in yeast, Radiat. Res, vol.87, pp.50-58, 1981.

F. Liang, M. Han, P. J. Romanienko, and M. Jasin, Homology-directed repair is a major double-strand break repair pathway in mammalian cells, Proc. Natl. Acad. Sci. USA, vol.95, pp.5172-5177, 1998.

S. Lambert and B. S. Lopez, Characterization of mammalian RAD51 double strand break repair using non lethal dominant negative forms, EMBO J, vol.19, pp.3090-3099, 2000.

M. Bryans, M. C. Valenzano, and T. D. Stamato, Absence of DNA ligase IV protein in XR-1 cells: evidence for stabilization by XRCC4, Mutat. Res, vol.433, pp.53-58, 1999.

F. Delacote, M. Han, T. D. Stamato, M. Jasin, and B. S. Lopez, An xrcc4 defect or Wortmannin stimulates homologous recombination specifically induced by double-strand breaks in mammalian cells, Nucleic Acids Res, vol.30, pp.3454-3463, 2002.

T. Haaf, E. I. Golub, G. Reddy, C. M. Radding, and D. C. Ward, Nuclear foci of mammalian Rad51 recombination protein in somatic cells after DNA damage and its localization in synaptonemal complexes, Proc. Natl. Acad. Sci. USA, vol.92, pp.2298-2302, 1995.

E. P. Rogakou, C. Boon, C. Redon, and W. M. Bonner, Megabase chromatin domains involved in DNA double-strand breaks in vivo, J. Cell. Biol, vol.146, pp.905-916, 1999.

F. Daboussi, J. Thacker, and B. S. Lopez, Genetic interactions between RAD51 and its paralogues for centrosome fragmentation and ploidy control, independently of the sensitivity to genotoxic stresses, Oncogene, vol.24, pp.3691-3696, 2005.

J. A. Aten, J. Stap, P. M. Krawczyk, C. H. Van-oven, R. A. Hoebe et al., Dynamics of DNA double-strand breaks revealed by clustering of damaged chromosome domains, Science, vol.303, pp.92-95, 2004.

C. Redon, D. Pilch, E. Rogakou, O. Sedelnikova, K. Newrock et al., Histone H2A variants H2AX and H2AZ, vol.12, pp.162-169, 2002.

K. Rothkamm and M. Lobrich, Evidence for a lack of DNA doublestrand break repair in human cells exposed to very low x-ray doses, Proc. Natl. Acad. Sci. USA, vol.100, pp.5057-5762, 2003.

Y. Saintigny, D. Rouillard, B. Chaput, T. Soussi, and B. S. Lopez, Mutant p53 proteins stimulate spontaneous and radiation-induced intrachromosomal homologous recombination independently of the alteration of the transactivation activity and of the G1 checkpoint, Oncogene, vol.18, pp.3553-3563, 1999.
URL : https://hal.archives-ouvertes.fr/cea-01938157

Y. Y. Wang, V. M. Maher, R. M. Liskay, and J. J. Mccormick, Carcinogens can induce homologous recombination between duplicated chromosomal sequences in mouse L cells, Mol. Cell. Biol, vol.8, pp.196-202, 1988.

E. Raderschall, E. I. Golub, and T. Haaf, Nuclear foci of mammalian recombination proteins are located at single-stranded DNA regions formed after DNA damage, Proc. Natl. Acad. Sci. USA, vol.96, pp.1921-1926, 1999.

S. Tashiro, J. Walter, A. Shinohara, N. Kamada, and T. Cremer, Rad51 accumulation at sites of DNA damage and in postreplicative chromatin, J. Cell. Biol, vol.150, pp.283-291, 2000.

P. A. Jeggo, Identification of genes involved in repair of DNA double-strand breaks in mammalian cells, Radiat. Res, vol.150, pp.80-91, 1998.

G. C. Smith and S. P. Jackson, The DNA-dependent protein kinase, Genes Dev, vol.13, pp.916-934, 1999.

F. Paques and J. E. Haber, Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol, Mol. Biol. Rev, vol.63, pp.349-404, 1999.

E. L. Ivanov, N. Sugawara, J. Fishman-lobell, and J. E. Haber, Genetic requirements for the single-strand annealing pathway of doublestrand break repair in Saccharomyces cerevisiae, Genetics, vol.142, pp.693-704, 1996.

A. Malkova, E. L. Ivanov, and J. E. Haber, Double-strand break repair in the absence of RAD51 in yeast: a possible role for break-induced DNA replication, Proc. Natl. Acad. Sci. USA, vol.93, pp.7131-7136, 1996.

A. Malkova, M. L. Naylor, M. Yamaguchi, G. Ira, and J. E. Haber, RAD51-dependent break-induced replication differs in kinetics and checkpoint responses from RAD51-mediated gene conversion, Mol. Cell. Biol, vol.25, pp.933-944, 2005.

M. Amor, K. L. Parker, H. Globerman, M. I. New, and P. C. White, Mutation in the CYP21B gene (Ile-172-Asn) causes steroid 21-hydroxylase deficiency, Proc. Natl. Acad. Sci. USA, vol.85, pp.1600-1604, 1988.

W. K. Cavenee, T. P. Dryja, R. A. Phillips, W. F. Benedict, R. Godbout et al., Expression of recessive alleles by chromosomal mechanisms in retinoblastoma, Nature, vol.305, pp.779-784, 1983.

S. M. Purandare and P. I. Patel, Recombination hot spots and human disease, Genome Res, vol.7, pp.773-786, 1997.

P. Bertrand, Y. Saintigny, and B. S. Lopez, p53s double life: transactivation-independent repression of homologous recombination, Trends Genet, vol.20, pp.235-243, 2004.
URL : https://hal.archives-ouvertes.fr/cea-01938177

C. Arnaudeau, T. Helleday, and D. Jenssen, The RAD51 protein supports homologous recombination by an exchange mechanism in mammalian cells, J. Mol. Biol, vol.289, pp.1231-1238, 1999.

Y. Huang, S. Nakada, T. Ishiko, T. Utsugisawa, R. Datta et al., Role for caspase-mediated cleavage of Rad51 in induction of apoptosis by DNA damage, Mol. Cell. Biol, vol.19, pp.2986-2997, 1999.

S. Vispé, C. Cazaux, C. Lesca, and M. Defais, Overexpression of Rad51 protein stimulates homologous recombination and increases resistance of mammalian cells to ionizing radiation, Nucleic Acids Res, vol.26, pp.2859-2864, 1998.

H. Maacke, K. Jost, S. Opitz, S. Miska, Y. Yuan et al., DNA repair and recombination factor Rad51 is over-expressed in human pancreatic adenocarcinoma, Oncogene, vol.19, pp.2791-2795, 2000.

E. Raderschall, A. Bazarov, J. Cao, R. Lurz, A. Smith et al., Formation of higherorder nuclear Rad51 structures is functionally linked to p21 expression and protection from DNA damage-induced apoptosis, J. Cell. Sci, vol.115, pp.153-164, 2002.

M. S. Meyn, High spontaneous intrachromosomal recombination rates in ataxia-telangiectasia, Science, vol.260, pp.1327-1330, 1993.

A. Slupianek, C. Schmutte, G. Tombline, M. Nieborowska-skorska, G. Hoser et al., BCR/ABL regulates mammalian RecA homologs, resulting in drug resistance, Mol. Cell, vol.8, pp.795-806, 2001.

S. Gangloff, C. Soustelle, and F. Fabre, Homologous recombination is responsible for cell death in the absence of the Sgs1 and Srs2 helicases, Nat. Genet, vol.25, pp.192-194, 2000.

Y. Saintigny, K. Makienko, C. Swanson, M. J. Emond, and R. J. Monnat, Homologous recombination resolution defect in Werner syndrome, Mol. Cell. Biol, vol.22, pp.6971-6978, 2002.
URL : https://hal.archives-ouvertes.fr/cea-01938137

G. Olivieri, J. Bodycote, and S. Wolff, Adaptive response of human lymphocytes to low concentrations of radioactive thymidine, Science, vol.223, pp.594-597, 1984.

B. Leonard, Adaptive response by single cell radiation hits-implications for nuclear workers, Radiat. Prot. Dosimetry, vol.116, pp.387-391, 2005.

K. Tanaka, S. Sawada, and N. Kamada, Relative biological effectiveness and dose rate effect of tritiated water on chromosomes in human lymphocytes and bone marrow cells, Mutat. Res, vol.323, pp.53-61, 1994.

W. Deng, D. P. Morrison, K. L. Gale, and J. N. Lucas, Biological dosimetry of beta-ray exposure from tritium using chromosome translocations in human lymphocytes analyzed by fluorescence in situ hybridization, Radiat. Res, vol.150, pp.400-405, 1998.

T. Ikushima, R. Benz, and A. Carsten, Sister chromatid exchanges in bone marrow cells of mice maintained on tritiated water, Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med, vol.45, pp.251-256, 1984.