M. Durante, New challenges in high-energy particle radiobiology, The British Journal of Radiology, vol.87, issue.1035, p.20130626, 2014.
DOI : 10.1259/bjr.20130626

H. Tsujii and T. Kamada, A Review of Update Clinical Results of Carbon Ion Radiotherapy, Japanese Journal of Clinical Oncology, vol.42, issue.8, pp.670-85, 2012.
DOI : 10.1093/jjco/hys104

J. Loeffler and D. M. , Charged particle therapy???optimization, challenges and future directions, Nature Reviews Clinical Oncology, vol.105, issue.7, pp.411-435, 2013.
DOI : 10.1038/nrclinonc.2013.79

H. Gelderblom, P. Hogendoorn, S. Dijkstra, C. Van-rijswijk, A. Krol et al., The clinical approach towards chondrosarcoma. The Oncologist, pp.320-329, 2008.

A. Jensen, M. Münter, and J. Debus, Review of clinical experience with ion beam radiotherapy, The British Journal of Radiology, vol.84, issue.special_issue_1, pp.35-47, 2011.
DOI : 10.1259/bjr/71511359

E. Holliday and S. Frank, Proton Radiation Therapy for Head and Neck Cancer: A Review of the Clinical Experience to Date, International Journal of Radiation Oncology*Biology*Physics, vol.89, issue.2, pp.292-302, 2014.
DOI : 10.1016/j.ijrobp.2014.02.029

J. Clark, C. Dass, and P. Choong, Development of chondrosarcoma animal models for assessment of adjuvant therapy, ANZ Journal of Surgery, vol.6, issue.1, pp.327-363, 2009.
DOI : 10.1111/j.1445-2197.2009.04884.x

J. Clark, T. Akiyama, C. Dass, and P. Choong, New clinically relevant, orthotopic mouse models of human chondrosarcoma with spontaneous metastasis, Cancer Cell International, vol.10, issue.1, p.20, 2010.
DOI : 10.1186/1475-2867-10-20

D. Monderer, A. Luseau, A. Bellec, E. David, S. Ponsolle et al., New chondrosarcoma cell lines and mouse models to study the link between chondrogenesis and chemoresistance, Laboratory Investigation, vol.30, issue.10, pp.1100-1114, 2013.
DOI : 10.1038/labinvest.2013.101

J. Van-oosterwijk, J. Plass, D. Meijer, I. Que, M. Karperien et al., An orthotopic mouse model for chondrosarcoma of bone provides an in vivo tool for drug testing, Virchows Archiv, vol.1, issue.5, pp.101-110, 2014.
DOI : 10.1007/s00428-014-1670-y

K. Storch, I. Eke, K. Borgmann, M. Krause, C. Richter et al., Three-Dimensional Cell Growth Confers Radioresistance by Chromatin Density Modification, Cancer Research, vol.70, issue.10, pp.3925-3959, 2010.
DOI : 10.1158/0008-5472.CAN-09-3848

W. Wilson and M. Hay, Targeting hypoxia in cancer therapy, Nature Reviews Cancer, vol.13, issue.6, pp.393-410, 2011.
DOI : 10.1038/nrc3064

A. Freyria, M. Ronzière, D. Cortial, L. Galois, D. Hartmann et al., Comparative Phenotypic Analysis of Articular Chondrocytes Cultured within Type I or Type II Collagen Scaffolds, Tissue Engineering Part A, vol.15, issue.6, pp.1233-1278, 2009.
DOI : 10.1089/ten.tea.2008.0114

M. Demoor, D. Ollitrault, T. Gomez-leduc, M. Bouyoucef, M. Hervieu et al., Cartilage tissue engineering: Molecular control of chondrocyte differentiation for proper cartilage matrix reconstruction, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1840, issue.8, pp.2414-2454, 1840.
DOI : 10.1016/j.bbagen.2014.02.030

F. Legendre, D. Ollitrault, M. Hervieu, C. Baugé, L. Maneix et al., Enhanced Hyaline Cartilage Matrix Synthesis in Collagen Sponge Scaffolds by Using siRNA to Stabilize Chondrocytes Phenotype Cultured with Bone Morphogenetic Protein-2 Under Hypoxia, Tissue Engineering Part C: Methods, vol.19, issue.7, pp.550-67, 2013.
DOI : 10.1089/ten.tec.2012.0508

Y. Saintigny, S. Cruet-hennequart, D. Hamdi, C. F. Lefaix, and J. , Impact of Therapeutic Irradiation on Healthy Articular Cartilage, Radiation Research, vol.183, issue.2, pp.135-181, 2015.
DOI : 10.1667/RR13928.1

J. Gibson, P. Milner, R. White, T. Fairfax, and R. Wilkins, Oxygen and reactive oxygen species in articular cartilage: modulators of ionic homeostasis, Pfl??gers Archiv - European Journal of Physiology, vol.50, issue.Pt 3, pp.563-73, 2008.
DOI : 10.1007/s00424-007-0310-7

S. Claus, N. Mayer, E. Aubert-foucher, H. Chajra, E. Perrier-groult et al., Cartilage-Characteristic Matrix Reconstruction by Sequential Addition of Soluble Factors During Expansion of Human Articular Chondrocytes and Their Cultivation in Collagen Sponges, Tissue Engineering Part C: Methods, vol.18, issue.2, pp.104-116, 2012.
DOI : 10.1089/ten.tec.2011.0259

K. Ando and Y. Kase, Biological characteristics of carbon-ion therapy, International Journal of Radiation Biology, vol.74, issue.2, pp.715-743, 2009.
DOI : 10.1080/09553000903072470

H. Chajra, C. Rousseau, D. Cortial, M. Ronzière, D. Herbage et al., Collagen-based biomaterials and cartilage engineering. Application to osteochondral defects, Biomed Mater Eng, vol.18, issue.1, pp.33-45, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00315232

C. Ma, C. Coffey, L. Dewerd, C. Liu, R. Nath et al., AAPM protocol for 40-300 kV x-ray beam dosimetry in radiotherapy and radiobiology, Medical Physics, vol.23, issue.6, pp.868-93, 2001.
DOI : 10.1118/1.1374247

C. Hellweg, C. Baumstark-khan, C. Schmitz, P. Lau, M. Meier et al., Carbon-Ion-Induced Activation of the NF-??B Pathway, Radiation Research, vol.175, issue.4, pp.424-455, 2011.
DOI : 10.1667/RR2423.1

A. Suetens, M. Moreels, R. Quintens, S. Chiriotti, K. Tabury et al., Carbon ion irradiation of the human prostate cancer cell line PC3: a whole genome microarray study, Int J Oncol, vol.44, pp.1056-72, 2014.

G. Battistoni, F. Cerutti, A. Fasso, A. Ferrari, S. Muraro et al., The FLUKA code: description and benchmarking Amer Inst Physics, Hadronic Shower Simulation Workshop, pp.31-49, 2007.

A. Ferrari, P. Sala, A. Fasso, and J. Ranft, FLUKA: A Multi-Particle Transport Code, Geneva: CERN, p.405, 2005.
DOI : 10.2172/877507

T. Sato, K. Niita, N. Matsuda, S. Hashimoto, Y. Iwamoto et al., Particle and Heavy Ion Transport code System, PHITS, version 2.52, Journal of Nuclear Science and Technology, vol.31, issue.9, pp.913-936, 2013.
DOI : 10.1080/18811248.2011.9711675

G. Gonon, J. Groetz, S. De-toledo, R. Howell, M. Fromm et al., Nontargeted Stressful Effects in Normal Human Fibroblast Cultures Exposed to Low Fluences of High Charge, High Energy (HZE) Particles: Kinetics of Biologic Responses and Significance of Secondary Radiations, Radiation Research, vol.179, issue.4, pp.444-57, 2013.
DOI : 10.1667/RR3017.1.s2

URL : https://hal.archives-ouvertes.fr/hal-00801993

T. Puck and P. Marcus, ACTION OF X-RAYS ON MAMMALIAN CELLS, Journal of Experimental Medicine, vol.103, issue.5, pp.653-66, 1956.
DOI : 10.1084/jem.103.5.653

N. Franken, H. Rodermond, J. Stap, J. Haveman, and C. Van-bree, Clonogenic assay of cells in vitro, Nature Protocols, vol.19, issue.5, pp.2315-2324, 2006.
DOI : 10.1080/095530097143653

D. Kim, S. Seo, S. Cho, S. Chang, H. Lee et al., Targeting of cell survival genes using small interfering RNAs (siRNAs) enhances radiosensitivity of Grade II chondrosarcoma cells, Journal of Orthopaedic Research, vol.295, issue.6, pp.820-828, 2007.
DOI : 10.1002/jor.20377

J. Van-oosterwijk, D. De-jong, M. Van-ruler, P. Hogendoorn, P. Dijkstra et al., Three new chondrosarcoma cell lines: one grade III conventional central chondrosarcoma and two dedifferentiated chondrosarcomas of bone, BMC Cancer, vol.189, issue.6, p.10, 2012.
DOI : 10.1002/(SICI)1096-9896(199912)189:4<454::AID-PATH467>3.0.CO;2-N

G. Nawa, T. Ueda, S. Mori, H. Yoshikawa, H. Fukuda et al., Prognostic significance of Ki67 (MIB1) proliferation index and p53 over-expression in chondrosarcomas, International Journal of Cancer, vol.22, issue.2, pp.86-91, 1996.
DOI : 10.1002/(SICI)1097-0215(19960422)69:2<86::AID-IJC3>3.0.CO;2-R

J. Perez, A. Decouvelaere, T. Pointecouteau, D. Pissaloux, J. Michot et al., Inhibition of Chondrosarcoma Growth by mTOR Inhibitor in an In Vivo Syngeneic Rat Model, PLoS ONE, vol.8, issue.6, p.32458, 2012.
DOI : 10.1371/journal.pone.0032458.s002

I. Spadinger and B. Palcic, Co ??-rays, 55 kVp X-rays, 250 kVp X-rays, and 11 MeV Electrons at Low Doses, International Journal of Radiation Biology, vol.43, issue.3, pp.345-53, 1992.
DOI : 10.2307/3577374

A. Upton and V. Bond, NCRP Report No. 064 -Influence of Dose and Its Distribution in Time on Dose?response Relationships for Low-LET Radiations, 1980.

J. Gerdes, H. Lemke, H. Baisch, H. Wacker, U. Schwab et al., Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67, J Immunol Baltim Md, vol.133, pp.1710-1715, 1950.

T. Scholzen and J. Gerdes, The Ki-67 protein: From the known and the unknown, Journal of Cellular Physiology, vol.19, issue.31, pp.311-333, 2000.
DOI : 10.1002/(SICI)1097-4652(200003)182:3<311::AID-JCP1>3.0.CO;2-9

M. Löbrich, A. Shibata, A. Beucher, A. Fisher, M. Ensminger et al., ??H2AX foci analysis for monitoring DNA double-strand break repair: Strengths, limitations and optimization, Cell Cycle, vol.9, issue.4, pp.662-671, 2010.
DOI : 10.4161/cc.9.4.10764

T. Paull, E. Rogakou, V. Yamazaki, C. Kirchgessner, M. Gellert et al., A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage, Current Biology, vol.10, issue.15, pp.886-95, 2000.
DOI : 10.1016/S0960-9822(00)00610-2

L. Mah, A. El-osta, and T. Karagiannis, ??H2AX: a sensitive molecular marker of DNA damage and repair, Leukemia, vol.678, issue.4, pp.679-86, 2010.
DOI : 10.1002/cyto.a.20426

N. Desai, D. M. Lin, Z. Cucinotta, F. Wu, and H. , High LET-induced H2AX phosphorylation around the Bragg curve, Advances in Space Research, vol.35, issue.2, pp.236-278, 2005.
DOI : 10.1016/j.asr.2005.01.010

C. Fürweger, M. Hajek, N. Vana, R. Kodym, and R. Okayasu, Cellular signal transduction events as a function of linear energy transfer (LET), Radiation Protection Dosimetry, vol.126, issue.1-4, pp.418-440, 2007.
DOI : 10.1093/rpd/ncm086

A. Roig, S. Hight, J. Minna, J. Shay, A. Rusek et al., DNA damage intensity in fibroblasts in a 3-dimensional collagen matrix correlates with the Bragg curve energy distribution of a high LET particle, International Journal of Radiation Biology, vol.166, issue.2, pp.194-204, 2010.
DOI : 10.3109/09553000903418603

F. Antonelli, A. Campa, G. Esposito, P. Giardullo, M. Belli et al., Induction and Repair of DNA DSB as Revealed by H2AX Phosphorylation Foci in Human Fibroblasts Exposed to Low- and High-LET Radiation: Relationship with Early and Delayed Reproductive Cell Death, Radiation Research, vol.183, issue.4, pp.417-448, 2015.
DOI : 10.1667/RR13855.1

J. Ostashevsky, A Model Relating Cell Survival to DNA Fragment Loss and Unrepaired Double-Strand Breaks, Radiation Research, vol.118, issue.3, pp.437-66, 1989.
DOI : 10.2307/3577405

R. Britten, V. Nazaryan, L. Davis, S. Klein, D. Nichiporov et al., Variations in the RBE for Cell Killing Along the Depth-Dose Profile of a Modulated Proton Therapy Beam, Radiation Research, vol.179, issue.1, pp.21-29, 2013.
DOI : 10.1667/RR2737.1

S. Cruet-hennequart, C. Drougard, G. Shaw, F. Legendre, M. Demoor et al., Radiation-Induced Alterations of Osteogenic and Chondrogenic Differentiation of Human Mesenchymal Stem Cells, PLOS ONE, vol.294, issue.4, p.119334, 2015.
DOI : 10.1371/journal.pone.0119334.s004

D. Ollitrault, F. Legendre, C. Drougard, M. Briand, H. Benateau et al., siRNAs Favor Neo-Cartilage Hyaline Matrix Formation in Chondrocytes, Tissue Engineering Part C: Methods, vol.21, issue.2, pp.133-180, 2014.
DOI : 10.1089/ten.tec.2013.0724

M. Wakatsuki, N. Magpayo, H. Kawamura, and K. Held, Differential Bystander Signaling Between Radioresistant Chondrosarcoma Cells and Fibroblasts After X-Ray, Proton, Iron Ion and Carbon Ion Exposures, International Journal of Radiation Oncology*Biology*Physics, vol.84, issue.1, pp.103-111, 2012.
DOI : 10.1016/j.ijrobp.2012.02.052

F. Chevalier, D. Hamdi, Y. Saintigny, and J. Lefaix, Proteomic overview and perspectives of the radiation-induced bystander effects, Mutation Research/Reviews in Mutation Research, vol.763, pp.280-93, 2015.
DOI : 10.1016/j.mrrev.2014.11.008