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Abstract—This work demonstrates an ultra-low power,
software-defined wireless transceiver designed for IoT appli-
cations using an open-source 32-bit RISC-V core. The key
driver behind this success is an optimized hardware/software
partitioning of the receiver’s digital signal processing operators.
We benchmarked our architecture on an algorithm for the
detection of FSK-modulated frames using a RISC-V compat-
ible core and ARM Cortex-M series processors. We use only
standard compilation tools and no assembly-level optimizations.
QOur results show that Bluetooth LE frames can be detected
with an estimated peak core power consumption of 1.6 mW on
a 28 nm FDSOI technology, and falling to less than 0.6 mW
(on average) during symbol demodulation. This is achieved at
nominal voltage. Compared to state of the art, our work offers
a power efficient alternative to the design of dedicated baseband
processors for ultra-low power software-defined radios with a
low software complexity.

Index Terms—IoT, LPWA, software-defined radio, RISC-V

I. INTRODUCTION

To enable massive Internet of Things (IoT) applications,
many new wireless signaling schemes, and especially those
targeting long-range, wide area (LPWA) networks, have re-
cently been proposed. While focusing on similar applications,
these new signaling schemes are considerably different. For
example, ultra-narrow band signaling based on differential bi-
nary phase shift keying (DBPSK) and Gaussian frequency shift
keying (GFSK) modulations is exploited in the Sigfox [1] pro-
tocol. Alternatively, chirp sequence spread spectrum (CSSS)
modulation is employed by the LoRa physical layer [2]. These
new systems however share similar characteristics from an
RF/analog perspective. For instance, many LPWA networks
operate below 1 GHz and require a relatively small analog
bandwidth (less than 2 MHz). Thus, a common RF/analog
front-end could easily be used to build a multi-standard
transceiver, provided that the digital front-end (DFE) and digi-
tal baseband (DBB) elements of the transceiver are sufficiently
versatile to address the specific requirements of each signaling
scheme. Faced with the uncertain evolution of LPWA networks
and standards, such a multi-standard solution could minimize
development cost for multiple solutions, enable multi-mode
applications and future-proof designs.

A software-defined LPWA transceiver is therefore highly
desirable. But developing a programmable architecture that
is compatible with the ultra-low power (ULP) consumption
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required by LPWA applications is a major challenge. Luckily,
both CMOS scaling and the current trend towards hetero-
geneous, multi-core IoT platforms can help to address this
challenge [3]-[5]. In addition, recent research has proposed
specialized architectures to address this challenge [6], [7].
But since developing a dedicated processor architecture is
costly and resource-intensive, the present work instead fo-
cuses on a different approach based on existing and widely
available 32-bit scalar processor architectures with single-
cycle multiplication but no floating-point unit (FPU). While
not originally designed with wireless digital signal processing
(DSP) in mind, we show that these processors can provide
an attractive solution to this end. We start by proposing an
architecture that partitions the hardware and software digital
processing elements of a wireless receiver. Then we compare
the performance of a benchmark application on two ARM-
based processors and an open-source RISC-V compatible core
(RI5CY) [9]. Finally, a power estimation based on a Bluetooth
LE application is used to prove the feasibility of our approach.

II. RELATED WORK

For the first time, an SDR processor architecture that
achieves mW-level power consumption was presented in [6].
To achieve this result, the authors claim that the most compu-
tationally intense kernels in a digital receiver are vectorial in
nature and that the datapath of an IoT receiver can be reduced
to very small bit widths (4 or 8 bits) without noticeably
sacrificing performance. The authors therefore propose an
architecture based on a custom Single Instruction Multiple
Data (SIMD) unit associated with a scalar unit. The focus is
on reducing the SDR processor’s working frequency in order
to employ deep voltage scaling. Unfortunately, the choice of
vectorial processing for wireless DSP is questionable for two
reasons. While many of the required algorithms are indeed
vectorial in nature (e.g. FIR filters), those that operate on
undecimated sample streams are clearly better implemented
using reconfigurable hardware in the DFE. Secondly, limiting
the signal stream to 8 bits results in quantification errors
that can impact sensitivity and limit the tolerance to other
imperfections of the wireless transceiver.

A different approach is proposed in [7] which presents
a baseband processor architecture based on 32-bit scalar
processing. Application-specific instructions are introduced to
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Fig. 1. Simplified architecture of software-defined receiver
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reduce power in register files through instruction chaining.
While running a frame detection algorithm, the authors state
that these instructions reduce the number of required in-
structions from 10 to 4. We observe that, again, the focus
is on reducing the processor clock frequency. Finally, in
both of these works, we note that the choice of designing a
dedicated machine implies that algorithms must be hand-coded
in machine specific assembly code.

III. SOFTWARE-DEFINED ULP RECEIVER ARCHITECTURE

A key question to answer when building a programmable
platform is which parts of the transceiver’s DSP chain should
be performed in hardware (HW) versus software (SW). Indeed,
practical power consumption considerations limit the use of
software DSP to sample streams that have been sufficiently
decimated from the ADCs’ high sampling rate. Fortunately,
narrow-band wireless transmission schemes typically have
similar DSP requirements in the digital front-end (DFE). Lim-
iting the discussion to the receiver, which is computationally
more demanding, the DFE is in charge of removing the
intermediate frequency (IF) if any, and performing partial or
complete channel filtering and automatic gain control (AGC).
The logical choice therefore consists in implementing the DFE
DSP in configurable hardware which can easily accommodate
the differing requirements of IoT wireless standards.

A simplified software-defined receiver architecture is shown
in Fig. 1. Complex samples are produced at a constant sample
rate by the DFE and are temporarily stored in a circular sample
buffer. Once this buffer contains at least BLOCK_SIZE samples,
it triggers a “buffer full” interrupt. This wakes up the DBB
processor which then reads BLOCK_SIZE samples starting
from its last read address and processes them. During this time,
the DFE is still continuously producing and storing samples
in the buffer which must be sized to prevent over-writing of
unread samples. Real-time processing of the incoming samples
is necessary since the exact arrival time of a frame is unknown.
Also, it is common for the DBB algorithm to send control
signals to the DFE which requires a quick response time from
the DBB.

Figure 2 shows a common characteristic of wireless frames
which are composed of at least three distinct parts. The
Preamble contains symbols that allow the receiver to detect the
frame’s presence and recover the symbol timing information
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Fig. 3. Simplified view of FSK demodulation algorithm. Double arrows
indicate complex signals. The signal dynamic range is shown in lighter type.

from the noisy signal. If a preamble is detected, the receiver
starts looking for the Start of Frame Delimitor (SFD) which
contains symbols that allow the receiver to synchronize to
the beginning of the frame’s useful data. Once it is found,
the receiver can start demodulating the data symbols. As a
rule, the computational complexity is highest in the “SFD
Search” phase since, in order to avoid false detection, most
receivers continue scanning for a preamble while searching
for the SFD. The complexity of the ‘“Demodulation” phase
is the lowest since the recovered symbol clock can be used
to further decimate the sample stream. To take advantage of
the variations of complexity over time, the DBB processor
must be able to put itself in deep sleep, ideally in a single
cycle, while waiting for the next block of samples to be
available in the sample buffer. To further minimize power, the
ROM section of the DBB processor’s TCM (Fig. 1) should
be implemented using either low-retention-current SRAM or
using a high-speed embedded non volatile technology. In this
way, the transceiver’s voltage supply can be switched off
between successive frame transmissions.

IV. SOFTWARE FSK DEMODULATION

In this section, we focus on a specific example of a DBB re-
ceiver algorithm for an FSK-based signaling scheme. Because
FSK is very common in IoT applications, this algorithm will
serve as a good benchmark for the complexity comparison
presented in section V. The detection and demodulation of
FSK-modulated frames can be achieved by an algorithm
similar to that presented in Fig. 3 [8]. While a dynamic range
of only a few bits for DBBIn[k] may be sufficient in ideal
conditions, in practice, a few more bits are typically required,
with 8 bits a safe maximum. We also assume that the signal
is over-sampled at an over-sampling ratio (OSR) of 6 times
the symbol rate (OSR’s between 2 and 8 are common, with
higher OSR values leading to greater detection performance).

The DBB algorithm starts with a Hermitian product, defined
as DBBIn[k| x DBBIn[k — n] with n the delay between two
samples. With a delay of 1, the imaginary part of the Hermitian
product is approximately proportional to the instantaneous
frequency. To eliminate a bit of noise, the signal is then
averaged over OSR consecutive samples and then scaled down
by 3 bits (N = 8) to conserve a 16-bit dynamic range. Next,
the IR filter y[k] = =z[k] — 0.875y[k — OSR] is used to
correlate the signal with the known preamble made up of
alternating symbols (e.g. “01010101...”). The absolute value
is then calculated and the greatest of these values over OSR
consecutive samples is stored, along with its index, in a table.



If one of these stored values exceeds a user-defined threshold,
the SFDSearch signal is set to TRUE, with TRUE=1 and
FALSE=0. If this occurs (before a timeout), symbols are
demodulated by taking the sign of the imaginary part of the
signal and the search for the pre-defined SFD bit sequence
is enabled. If found, the SFDFound signal is set to TRUE.
This shuts off both the preamble processing steps and the
SFD search and activates the decimation of the input signal in
time-alignment with the recovered symbol clock. A simplified
version of the implemented algorithm is given in Algorithm 1.
A bare-metal C version of this algorithm is implemented
in order to extract the computational complexity of the three
phases of frame reception, noted as Synch, SFD and Demod
in Table I. Other phases of frame reception, such as de-
interleaving, decoding, CRC computation, etc. are not im-
plemented since they do not have real-time constraints. In
order to execute the code on available hardware, we first
load the samples corresponding to a noisy frame signal into
the processor’s memory and increment a pointer to this ar-
ray by BLOCK_SIZE to emulate the reading of the sample
buffer. In this study, we target 32-bit machines with single-
cycle multiplication but no FPU. In order to avoid wasting
precious CPU cycles to check for overflows, preliminary
Matlab simulations of the fixed-point DBB algorithm were
used to evaluate if bit scaling is necessary at the output of
mathematical operators. The result of this study can be seen
in Fig. 3 where the dynamic range increases less quickly
than could be expected. In general, we observe that, with
an 8-bit input, the algorithm, with its succession of multi-
plications, fits well on a 32-bit machine. This is a general
characteristic of DBB processing algorithms, where complex
multiplications are very common. Our implementation uses
no assembly level optimization (except when investigating the
RISCY DSP built-in extensions). We have deliberately chosen
not to optimize the C-source code and to let the compilers
perform the optimizations they are capable of. Optimizing the
source code, would, of course, further improve the results. The
only software optimization that was implemented consisted
in choosing BLOCK_SIZE = 6 and manually unrolling the
program’s main “for” loop which, of course, increases the
image size slightly but reduces complexity by avoiding the
modulo operator as well as certain “if-then-else” constructs.

V. COMPLEXITY COMPARISON RESULTS

In this section, an identical version of the software-loop-
unrolled DBB application code is compiled and executed on
several widely-available platforms: ARM Cortex M0+, M3,
and RISCY. RISCY is an open-source RISC-V compatible core
with hardware and DSP extensions [9]. The ARMCLANG
compiler and KEIL uVision5 simulator were used to simulate
the ARM cores. RTL-level simulations where used to simulate
the RISCY core. The average number of CPU cycles required
to process a single complex sample, which is obtained by
dividing the number of cycles required to process a block
of complex samples by BLOCK_SIZE, is presented for the
three phases of frame detection and for each core (Table I).

TABLE 1
PER TARGET COMPLEXITY OF FSK DBB ALGORITHM, BLOCK_SIZE=6

Average # of CPU cycles
Cpu Target pergcomplex samgle Memory (Bytes)
Synch | SFD | Demod | ROM Stack
MO+* 70 93 41 2468 376
M3a 69 89 42 2096 308
RI5CY BasicP 45 57 21 3052 287
RISCY + Ext.© 45 56 19 2816 271
RI5SCY + built-ins.© 50 61 27 2868 239

2ARMCLANG V6.7, Flags: “-Ofast”
bGCC-5.3.0, Flags: “-Ofast -funroll-all-loops”
°¢GCC-5.2.0, Flags: “-march=IMXpulpv2 -Ofast -funroll-all-loops”

As expected, the algorithm complexity is greatest in the SFD
search phase.

First, we observe that with this code, the performance of
the MO+ and M3, other than image size, is similar. To explain
this unexpected result, we investigated the memory accesses
for these target and observed that the MO+ performs an average
of 50% more accesses compared to the M3. We then studied
the IPC (instructions per clock) of both processors during the
Demod phase and find that the M3 IPC is 0.65 (due to a
larger number of multi-cycle instructions) while the MO+ IPC
is equal to 1. This explains the similarity of M3 and MO+
results in table I in spite of considerably different memory
accesses. Knowing that the M3 comes with a factor of 3
power consumption overhead with respect to the MO+ [10], we
conclude that the MO+ is a better option for our application.

Next, the code was compiled for the RISCY core first
using the generic RISC-V GCC compiler and then using the
“-march” option that is specific to this core. In the first two
cases, results are similar, only two cycles being saved in the
Demod phase due to the reduction in the number of branches.
We observe that, while RISCY’s HW loop and post incre-
ment extensions cannot be used by our algorithm, RISCY’s
p-mac, p.msu and immediate branching instructions help to
decrease image size slightly. Finally, the application code is

Algorithm 1 FSK DBB implementation pseudocode
OSR = 6;
for ( index = 0 ; index < BLOCK_SIZE ; index++ ) do
Calculate Hermitian product and average
if SFDFound == TRUE then
if index % OSR == maxindex then
Demodulate
end if
else
IIR filter and Max. of Magnitude over OSR samples
if MaxValue > Threshold then
SFDSearch = TRUE;
maxindex = index;
if index % OSR == maxindex then
Demodulate and search for SFD
end if
end if
end if
end for




modified to exploit RISCY’s built-in vectorial instructions.
The dotsp4 built-in function is used to calculate the 8-bit
complex multiplication of the Hermitian product. Recall that
23 = z1 x 22* is found using: Re(23) = ac + bd and
Im(23) = bc—ad, where z1 = a+1ib and 22 = c+id. To find
Re(z3), we load vector V1 (resp. vector V2) with the real and
the imaginary parts of z1 (resp. 22) and then use the built-
in function (_builtin_pulp_dotsp4(V1,V2)), which executes
simultaneously four byte operations on a 32-bit word. Next,
to find Im(23), V2 must be re-ordered and a sign change
applied before the dotp operation can be executed. These data
manipulations explain the poor results obtained (Table I). In
conclusion, RISCY’s hardware extensions bring little benefit
in our application.

Generaly, we observe that the RISC-V core (basic) improves
performance by more than 35% with respect to ARM-based
architectures. To understand the reasons behind this perfor-
mance gain, we carefully analyzed specific code segments
and found that, while the M3 uses a more complex DSP-
related instruction set, since these instructions require more
than one execution cycle, in the end, the same number of
cycles are required for mathematical calculations as on the
RISCY core. The analysis also revealed the benefit of the
BNE instruction (branch on comparison of two register values)
that is available in the RISC-V ISA. Finally, because of its
limited number of registers, the M3 needs to store a greater
number of intermediate results whereas the RISCY core, with
32 registers, performs typically 50% fewer memory accesses
compared to the M3. In turn, this will have a proportionally
positive impact on the TCDM power consumption.

VI. DSP PROCESSOR POWER CONSUMPTION ESTIMATION

Using the results presented in Table I and the power
consumption of the RISCY core [9], it is possible to estimate
the power consumption of the core that would execute our
DBB algorithm for the Bluetooth Low Energy (LE) physical
layer employing the GFSK modulation at a 1 Msymbols/s
signaling rate [11]. Extracting the worse-case complexity of 57
cycles/sample from Table I (RISCY basic configuration) and
assuming that the OSR can be reduced to 2 samples/symbol
(the resulting impact on sensitivity being less of an issue in
short-range IoT applications), we find that a minimum clock
frequency of 114 MHz is required.

The basic RISCY core presented in [9] is designed for a 2.8-
ns cycle time (357 MHz) and drains 26.28 pyW/MHz at 1.08
V in 65 nm CMOS. If we apply the 1.9x expected power gain
observed when moving from 65 nm to 28 nm UTBB FD-SOI
(as in [9]), we estimate that the core’s power consumption,
while running at 114 MHz, would be on the order of 1.6 mW
during the SFD Search phase, i.e. the shortest phase of frame
detection, and falling to less than half of this (on average)
during symbol demodulation. Since these estimations are given
for a supply voltage of 1.08 V, we observe that further power
savings could be obtained using voltage scaling. Of course,
the above power estimation is incomplete without the added
power drain of memory and interconnect.

TABLE II
COMPARISON OF PRESENT WORK WITH STATE OF THE ART
[6] [7] This work
Physical layer Bluetooth-LE OFDMA Bluetooth-LE
GFSK 1-Ms/s & CSSS GFSK 1-Ms/s
Processor type Dedicated Dedicated Generic
Architecture Vectorial Scalar Scalar
Compilation standard
Tools no no open-source
Technology CMOS 28nm | CMOS 65nm | FDSOI 28nm
Dyn. Power [mW] 1.372 (peak) 7.2 (ave.) 1.6 (peak)
Frequency [MHz] 20 3 114
OSR 4 - 2
Core area [mm?] 0.074 P 0.204 0.068° [9]
Voltage scaling yes (0.45 V) no no

2 Estimated.

b The complete system requires an additional MCU.
¢ This is for the RISC-V basic design in 65 nm CMOS. According to
the authors, the design occupies 46.9 kGE [9].

The comparison with prior art, Table II, shows that our
work offers a power and area efficient alternative to the
design of dedicated baseband processors. Indeed, by choosing
approaches that lower frequency and therefore voltage, authors
in [6] and [7] accept surface overheads which, in the end, result
in increased power consumption.

CONCLUSION

In this work, we show that, thanks to an optimized hard-
ware/software partitioning of the receiver’s digital signal pro-
cessing operators, an ultra-low power software-defined radio
for IoT applications can be implemented on generic 32-bit
architectures. Bluetooth LE frame detection can be achieved at
a peak power consumption of 1.6 mW assuming a basic RISC-
V compatible core in 28 nm FDSOI technology, and falling to
less than 0.6 mW (on average) during symbol demodulation.
Our work offers a power and area efficient alternative to the
design of dedicated baseband processors.
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