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Abstract

We examine a class of deep learning models with a tractable method to compute information-
theoretic quantities. Our contributions are three-fold: (i) We show how entropies and mutual
informations can be derived from heuristic statistical physics methods, under the assumption
that weight matrices are independent and orthogonally-invariant. (ii) We extend particular cases
in which this result is known to be rigorously exact by providing a proof for two-layers networks
with Gaussian random weights, using the recently introduced adaptive interpolation method.
(iii) We propose an experiment framework with generative models of synthetic datasets, on which
we train deep neural networks with a weight constraint designed so that the assumption in (i) is
veri�ed during learning. We study the behavior of entropies and mutual informations throughout
learning and conclude that, in the proposed setting, the relationship between compression and
generalization remains elusive.

The successes of deep learning methods have spurred e�orts towards quantitative modeling of
the performance of deep neural networks. In particular, an information-theoretic approach linking
generalization capabilities to compression has been receiving increasing interest. The intuition behind
the study of mutual informations in latent variable models dates back to the information bottleneck
(IB) theory of [ 1]. Although recently reformulated in the context of deep learning [2], verifying its
relevance in practice requires the computation of mutual informations for high-dimensional variables,
a notoriously hard problem. Thus, pioneering works in this direction focused either on small network
models with discrete (continuous, eventually binned) activations [3], or on linear networks [4, 5].

In the present paper we follow a di�erent direction, and build on recent results from statistical
physics [6, 7] and information theory [8, 9] to propose, in Section 1, a formula to compute information-
theoretic quantities for a class of deep neural network models. The models we approach, described in
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Section 2, are non-linear feed-forward neural networks trained on synthetic datasets with constrained
weights. Such networks capture some of the key properties of the deep learning setting that are
usually di�cult to include in tractable frameworks: non-linearities, arbitrary large width and depth,
and correlations in the input data. We demonstrate the proposed method in a series of numerical
experiments in Section 3. First observations suggest a rather complex picture, where the role of
compression in the generalization ability of deep neural networks is yet to be elucidated.

1 Multi-layer model and main theoretical results

A stochastic multi-layer model� We consider a model of multi-layer stochastic feed-forward
neural network where each elementx i of the input layer x 2 RN0 is distributed independently
as P0(x i ), while hidden units t `;i at each successive layert ` 2 RN ` (vectors are column vectors)
come fromP` (t `;i jW

|
`;i t ` � 1), with t 0 � x and W `;i denoting the i -th row of the matrix of weights

W` 2 RN ` � N ` � 1 . In other words

t0;i � x i � P0(�); t1;i � P1(�jW |
1;i x ); : : : tL;i � PL (�jW |

L;i t L � 1); (1)

given a set of weight matrices f W`gL
`=1 and distributions f P`gL

`=1 which encode possible non-
linearities and stochastic noise applied to the hidden layer variables, andP0 that generates the
visible variables. In particular, for a non-linearity t `;i = ' ` (h; � `;i ), where� `;i � P� (�) is the stochastic
noise (independent for eachi ), we have P` (t `;i jW

|
`;i t ` � 1) =

R
dP� (� `;i ) �

�
t `;i � ' ` (W

|
`;i t ` � 1; � `;i )

�
.

Model (1) thus describes a Markov chain which we denote byX ! T1 ! T2 ! � � � ! TL , with
T` = ' ` (W`T` � 1; � ` ), � ` = f � `;i g

N `
i =1 , and the activation function ' ` applied componentwise.

Replica formula� We shall work in the asymptotic high-dimensional statistics regime where
all ~� ` � N `=N0 are of order one whileN0 ! 1 , and make the important assumption that all
matrices W` are orthogonally-invariant random matrices independent from each other; in other
words, each matrix W` 2 RN ` � N ` � 1 can be decomposed as a product of three matrices,W` = U`S`V` ,
where U` 2 O(N ` ) and V` 2 O(N ` � 1) are independently sampled from the Haar measure, andS` is a
diagonal matrix of singular values. The main technical tool we use is a formula for the entropies
of the hidden variables, H (T` ) = � ET` ln PT` (t ` ), and the mutual information between adjacent
layers I (T` ; T` � 1) = H (T` ) + ET` ;T` � 1 ln PT` jT` � 1

(t ` jt ` � 1), based on the heuristic replica method
[10, 11, 6, 7, 8, 9]:

Claim 1 (Replica formula). Assume model (1) withL layers in the high-dimensional limit with
componentwise activation functions and weight matrices generated from the ensemble described above,
and denote by� Wk the eigenvalues ofW |

k Wk . Then for any ` 2 f 1; : : : ; Lg the normalized entropy
of T` is given by the minimum among all stationary points of the replica potential:

lim
N0 !1

1
N0

H (T` ) = min extr
A ;V ; ~A ; ~V

� ` (A ; V ; ~A ; ~V ); (2)

which depends oǹ -dimensional vectorsA ; V ; ~A ; ~V , and is written in terms of mutual information
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I and conditional entropiesH of scalar variables as

� ` (A ; V ; ~A ; ~V ) = I
�

t0; t0 +
� 0p

~A1

�
�

1
2

X̀

k=1

~� k� 1
� ~AkVk + � kAk ~Vk � FWk (AkVk )

�

+
` � 1X

k=1

~� k

h
H (tk j� k ; ~Ak+1 ; ~Vk ; ~� k ) �

1
2

log(2�e ~Ak+1 )
i

+ ~� `H (t ` j� ` ; ~V` ; ~� ` ); (3)

where � k = Nk=Nk� 1, ~� k = Nk=N0, � k =
R

dPk� 1(t) t2, ~� k = ( E� W k
� Wk )� k=� k , and � k � N (0; 1)

for k = 0 ; : : : ; `. In the computation of the conditional entropies in (3), the scalartk -variables are
generated fromP(t0) = P0(t0) and

P(tk j� k ; A; V; � ) = E~�; ~z Pk (tk + ~�=
p

Aj
p

� � V �k +
p

V ~z); k = 1 ; : : : ; ` � 1; (4)

P(t ` j� ` ; V; � ) = E~z P` (t ` j
p

� � V � ` +
p

V ~z); (5)

where ~� and ~z are independentN (0; 1) random variables. Finally, the function FWk (x) depends on
the distribution of the eigenvalues� W` following

FWk (x) = min
� 2 R

�
2� k � + ( � k � 1) ln(1 � � ) + E� W k

ln[x� Wk + (1 � � )(1 � � k � )]
	

: (6)

The computation of the entropy in the large dimensional limit, a computationally di�cult task,
has thus been reduced to an extremization of a function of4` variables, that requires evaluating
single or bidimensional integrals. This extremization can be done e�ciently, as detailed in the
Supplementary Material; a user-friendly Python package is provided [12], which performs the
computation for di�erent choices of prior P0, activations ' ` and spectra� W` . Finally, the mutual
information between successive layersI (T` ; T` � 1) can be obtained from the entropy following the
evaluation of an additional bidimensional integral, see Section 1.6.1 of the Supplementary Material.

Our approach in the derivation of (3) builds on recent progresses in statistical estimation and
information theory for generalized linear models following the application of methods from statistical
physics of disordered systems [10, 11] in communication [13], statistics [14] and machine learning
problems [15, 16]. In particular, we use advanced mean �eld theory [17] and the heuristic replica
method [10, 6], along with its recent extension to multi-layer estimation [7, 8, 9], in order to derive
the above formula (3). This derivation is lengthy and thus given in the Supplementary Material.

Rigorous statement� We recall the assumptions under which the replica formula of Claim 1
is conjectured to be exact:(i) weight matrices are drawn from an ensemble of random orthogonally-
invariant matrices, (ii) matrices at di�erent layers are statistically independent and (iii) layers have
a large dimension and respective sizes of adjacent layers are such that weight matrices have aspect
ratios f � k ; ~� kg`

k=1 of order one. While we could not prove the replica prediction in full generality, we
stress that it comes with multiple credentials: (i) for Gaussian priorP0 and Gaussian distributionsP` ,
it corresponds to the exact analytical solution when weight matrices are independent of each other
(see Section 1.6.2 of the Supplementary Material). (ii) In the single-layer case with a Gaussian weight
matrix, it reduces to formula (13) in the Supplementary Material, which has been recently rigorously
proven for (almost) all activation functions ' [18]. (iii) In the case of Gaussian distributions P` , it
has also been proven for a large ensemble of random matrices [19] and (iv) it is consistent with all
the results of the AMP [20, 21, 22] and VAMP [ 23] algorithms, known to perform well for these
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estimation problems. An equivalent formula was proposed by Reeves in [9] using di�erent heuristic
arguments.

In order to go beyond results for the single-layer problem and heuristic arguments, we prove
Claim 1 for the more involved multi-layer case, assuming Gaussian i.i.d. matrices and two non-linear
layers:

Theorem 1 (Two-layer Gaussian replica formula). Suppose(H 1) the input units distribution P0 is
separable and has bounded support;(H 2) the activations ' 1 and ' 2 corresponding toP1(t1;i jW

|
1;i x )

and P2(t2;i jW
|
2;i t 1) are boundedC2 with bounded �rst and second derivatives w.r.t their �rst argument;

and (H 3) the weight matricesW1, W2 have Gaussian i.i.d. entries. Then for model(1) with two
layers L = 2 the high-dimensional limit of the entropy veri�es Claim 1.

The theorem, that proves the conjecture presented in [7], is proven using the adaptive interpolation
method of [24, 18] in a multi-layer setting, as �rst developed in [25]. The lengthy proof, presented in
details in the Supplementary Material, is of independent interest and adds further credentials to
the replica formula, as well as o�ers a clear direction to further developments. Note that, following
the same approximation arguments as in [18] where the proof is given for the single-layer case, the
hypothesis (H 1) can be relaxed to the existence of the second moment of the prior,(H 2) can be
dropped and(H 3) extended to matrices with i.i.d. entries of zero mean,O(1=N0) variance and �nite
third moment.

2 Tractable models for deep learning

The multi-layer model presented above can be leveraged to simulate two prototypical settings of
deep supervised learning on synthetic datasets amenable to the replica tractable computation of
entropies and mutual informations.

 
teacher student generative recognition

teacher-student
(i.i.d. input data)

generative-recognition
(correlated input data)

Figure 1: Two models of synthetic data

The �rst scenario is the so-called teacher-
student (see Figure 1, left). Here, we assume
that the input x is distributed according to a
separableprior distribution PX (x ) =

Q
i P0(x i ),

factorized in the components ofx , and the corre-
sponding labely is given by applying a mapping
x ! y , called the teacher. After generating a
train and test set in this manner, we perform the
training of a deep neural network, the student,
on the synthetic dataset. In this case, the data
themselves have a simple structure given byP0.

In constrast, the second scenario allowsgen-
erative models(see Figure 1, right) that create
more structure, and that are reminiscent of the
generative-recognitionpair of models of a Vari-
ational Autoencoder (VAE). A code vector y
is sampled from a separable prior distribution
PY (y ) =

Q
i P0(yi ) and a corresponding data pointx is generated by a possibly stochastic neural

network, the generative model. This setting allows to create input data x featuring correlations,
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di�erently from the teacher-student scenario. The studied supervised learning task then consists in
training a deep neural net, the recognition model, to recover the codey from x .

In both cases, the chain going fromX to any later layer is a Markov chain in the form of (1). In
the �rst scenario, model (1) directly maps to the student network. In the second scenario however,
model (1) actually maps to the feed-forward combination of the generative model followed by the
recognition model. This shift is necessary to verify the assumption that the starting point (now
given by Y ) has a separable distribution. In particular, it generates correlated input dataX while
still allowing for the computation of the entropy of any T` .

At the start of a neural network training, weight matrices initialized as i.i.d. Gaussian random
matrices satisfy the necessary assumptions of the formula of Claim 1. In their singular value
decomposition

W` = U`S`V` (7)

the matrices U` 2 O(N ` ) and V` 2 O(N ` � 1), are typical independent samples from the Haar measure
across all layers. To make sure weight matrices remain close enough to independent during learning,
we de�ne a custom weight constraint which consists in keepingU` and V` �xed while only the matrix
S` , constrained to be diagonal, is updated. The number of parameters is thus reduced fromN ` � N ` � 1

to min(N ` ; N ` � 1). We refer to layers following this weight constraint as USV-layers. For the replica
formula of Claim 1 to be correct, the matricesS` from di�erent layers should furthermore remain
uncorrelated during the learning. In Section 3, we consider the training of linear networks for which
information-theoretic quantities can be computed analytically, and con�rm numerically that with
USV-layers the replica predicted entropy is correct at all times. In the following, we assume that is
also the case for non-linear networks.

In Section 3.2 of the Supplementary Material we train a neural network with USV-layers on
a simple real-world dataset (MNIST), showing that these layers can learn to represent complex
functions despite their restriction. We further note that such a product decomposition is reminiscent
of a series of works on adaptative structured e�cient linear layers (SELLs and ACDC) [26, 27]
motivated this time by speed gains, where only diagonal matrices are learned (in these works the
matrices U` and V` are chosen instead as permutations of Fourier or Hadamard matrices, so that
the matrix multiplication can be replaced by fast transforms). In Section 3, we discuss learning
experiments with USV-layers on synthetic datasets.

While we have de�ned model(1) as a stochastic model, traditional feed forward neural networks
are deterministic. In the numerical experiments of Section 3, we train and test networks without
injecting noise, and only assume a noise model in the computation of information-theoretic quantities.
Indeed, for continuous variables the presence of noise is necessary for mutual informations to remain
�nite (see discussion of Appendix C in [5]). We assume at layer̀ an additive white Gaussian noise of
small amplitude just before passing through its activation function to obtain H (T` ) and I (T` ; T` � 1),
while keeping the mappingX ! T` � 1 deterministic. This choice attempts to stay as close as possible
to the deterministic neural network, but remains inevitably somewhat arbitrary (see again discussion
of Appendix C in [5]).

Other related works� The strategy of studying neural networks models, with random weight
matrices and/or random data, using methods originated in statistical physics heuristics, such as the
replica and the cavity methods [10] has a long history. Before the deep learning era, this approach
led to pioneering results in learning for the Hop�eld model [28] and for the random perceptron
[29, 30, 15, 16].

Recently, the successes of deep learning along with the disqualifying complexity of studying real
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world problems have sparked a revived interest in the direction of random weight matrices. Recent
results �without exhaustivity� were obtained on the spectrum of the Gram matrix at each layer
using random matrix theory [31, 32], on expressivity of deep neural networks [33], on the dynamics
of propagation and learning [34, 35, 36, 37], on the high-dimensional non-convex landscape where
the learning takes place [38], or on the universal random Gaussian neural nets of [39].

The information bottleneck theory [1] applied to neural networks consists in computing the
mutual information between the data and the learned hidden representations on the one hand, and
between labels and again hidden learned representations on the other hand [2, 3]. A successful
training should maximize the information with respect to the labels and simultaneously minimize the
information with respect to the input data, preventing over�tting and leading to a good generalization.
While this intuition suggests new learning algorithms and regularizers [40, 41, 42, 43, 44, 45, 46], we
can also hypothesize that this mechanism is already at play in a priori unrelated commonly used
optimization methods, such as the simple stochastic gradient descent (SGD). It was �rst tested in
practice by [3] on very small neural networks, to allow the entropy to be estimated by binning of
the hidden neurons activities. Afterwards, the authors of [5] reproduced the results of [3] on small
networks using the continuous entropy estimator of [44], but found that the overall behavior of
mutual information during learning is greatly a�ected when changing the nature of non-linearities.
Additionally, they investigate the training of larger linear networks on i.i.d. normally distributed
inputs where entropies at each hidden layer can be computed analytically for an additive Gaussian
noise. The strategy proposed in the present paper allows us to evaluate entropies and mutual
informations in non-linear networks larger than in [5, 3].

3 Numerical experiments

Estimators and activation comparisons� Two non-parametric estimators have already been
considered by [5] to compute entropies and/or mutual informations during learning. The kernel-
density approach of Kolchinsky et. al. [44] consists in �tting a mixture of Gaussians (MoG) to samples
of the variable of interest and subsequently compute an upper bound on the entropy of the MoG [47].
The method of Kraskov et al. [48] uses nearest neighbor distances between samples to directly build
an estimate of the entropy. Both methods require the computation of the matrix of distances between
samples. Recently, [45] proposed a new non-parametric estimator for mutual informations which
involves the optimization of a neural network to tighten a bound. It is unfortunately computationally
hard to test how these estimators behave in high dimension as even for a known distribution the
computation of the entropy is intractable (#P-complete) in most cases. However the replica method
proposed here is a valuable point of comparison for cases where it is rigorously exact.

In the �rst numerical experiment we place ourselves in the setting of Theorem 1: a 2-layer
network with i.i.d weight matrices, where the formula of Claim 1 is thus rigorously exact in the limit
of large networks, and we compare the replica results with the non-parametric estimators of [44]
and [48]. Note that the requirement for smooth activations (H 2) of Theorem 1 can be relaxed (see
discussion below the Theorem). Additionally, non-smooth functions can be approximated arbitrarily
closely by smooth functions with equal information-theoretic quantities, up to numerical precision.

We consider a neural network with layers of equal sizeN = 1000 that we denote: X ! T1 ! T2.
The input variable components are i.i.d. Gaussian with mean 0 and variance 1. The weight matrices
entries are also i.i.d. Gaussian with mean 0. Their standard-deviation is rescaled by a factor1=

p
N

and then multiplied by a coe�cient � varying between0:1 and 10, i.e. around the recommended value
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for training initialization. To compute entropies, we consider noisy versions of the latent variables
where an additive white Gaussian noise of very small variance (� 2

noise = 10 � 5) is added right before
the activation function, T1 = f (W1X + � 1) and T2 = f (W2f (W1X ) + � 2) with � 1;2 � N (0; � 2

noiseI N ),
which is also done in the remaining experiments to guarantee the mutual informations to remain
�nite. The non-parametric estimators [44, 48] were evaluated using 1000 samples, as the cost of
computing pairwise distances is signi�cant in such high dimension and we checked that the entropy
estimate is stable over independent draws of a sample of such a size (error bars smaller than marker
size). On Figure 5, we compare the di�erent estimates ofH (T1) and H (T2) for di�erent activation
functions: linear, hardtanh or ReLU. The hardtanh activation is a piecewise linear approximation of
the tanh, hardtanh(x)= � 1 for x< � 1, x for � 1<x< 1, and 1 for x> 1, for which the integrals in
the replica formula can be evaluated faster than for the tanh.

In the linear and hardtanh case, the non-parametric methods are following the tendency of
the replica estimate when� is varied, but appear to systematically over-estimate the entropy. For
linear networks with Gaussian inputs and additive Gaussian noise, every layer is also a multivariate
Gaussian and therefore entropies can be directly computed in closed form (exact in the plot legend).
When using the Kolchinsky estimate in the linear case we also check the consistency of two strategies,
either �tting the MoG to the noisy sample or �tting the MoG to the deterministic part of the T` and
augment the resulting variance with � 2

noise, as done in [44] (Kolchinsky et al. parametric in the plot
legend). In the network with hardtanh non-linearities, we check that for small weight values, the
entropies are the same as in a linear network with same weights (linear approx in the plot legend,
computed using the exact analytical result for linear networks and therefore plotted in a similar color
to exact). Lastly, in the case of the ReLU-ReLU network, we note that non-parametric methods are
predicting an entropy increasing as the one of a linear network with identical weights, whereas the
replica computation re�ects its knowledge of the cut-o� and accurately features a slope equal to half
of the linear network entropy (1/2 linear approx in the plot legend). While non-parametric estimators
are invaluable tools able to approximate entropies from the mere knowledge of samples,they inevitably
introduce estimation errors. The replica method is taking the opposite view. While being restricted
to a class of models, it can leverage its knowledge of the neural network structure to provide a
reliable estimate. To our knowledge, there is no other entropy estimator able to incorporate such
information about the underlying multi-layer model.

Beyond informing about estimators accuracy, this experiment also unveils a simple but possibly
important distinction between activation functions. For the hardtanh activation, as the random
weights magnitude increases, the entropies decrease after reaching a maximum, whereas they only
increase for the unbounded activation functions we consider � even for the single-side saturating
ReLU. This loss of information for bounded activations was also observed by [5], where entropies
were computed by discretizing the output as a single neuron with bins of equal size. In this setting,
as the tanh activation starts to saturate for large inputs, the extreme bins (at� 1 and 1) concentrate
more and more probability mass, which explains the information loss. Here we con�rm that the
phenomenon is also observed when computing the entropy of the hardtanh (without binning and
with small noise injected before the non-linearity). We check via the replica formula that the same
phenomenology arises for the mutual informationsI (X ; T` ) (see Section3.1).

Learning experiments with linear networks� In the following, and in Section 3.3 of the the
Supplementary Material, we discuss training experiments of di�erent instances of the deep learning
models de�ned in Section 2. We seek to study the simplest possible training strategies achieving
good generalization. Hence for all experiments we use plain stochastic gradient descent (SGD) with
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Figure 2: Entropy of latent variables in stochastic networksX ! T1 ! T2, with equally sized
layers N = 1000, inputs drawn from N (0; I N ), weights from N (0; � 2I N 2 =N), as a function of the
weight scaling parameter� . An additive white Gaussian noiseN (0; 10� 5I N ) is added inside the
non-linearity. Left column: linear network. Center column: hardtanh-hardtanh network. Right
column: ReLU-ReLU network.

constant learning rates, without momentum and without any explicit form of regularization. The
sizes of the training and testing sets are taken equal and scale typically as a few hundreds times the
size of the input layer. Unless otherwise stated, plots correspond to single runs, yet we checked over
a few repetitions that outcomes of independent runs lead to identical qualitative behaviors. The
values of mutual informations I (X ; T` ) are computed by considering a noisy versions of the latent
variables where an additive white Gaussian noise of very small variance (� 2

noise = 10 � 5) is added
right before the activation function, as in the previous experiment. This noise is neither present
at training time, where it could act as a regularizer, nor at testing time. Given the noise is only
assumed at the last layer, the second to last layer is a deterministic mapping of the input variable;
hence the replica formula yielding mutual informations between adjacent layers gives us directly
I (T` ; T` � 1) = H (T` ) � H (T` jT` � 1) = H (T` ) � H (T` jX ) = I (T` ; X ). We provide a second Python
package [49] to implement in Keras learning experiments on synthetic datasets, using USV- layers
and interfacing the �rst Python package [12] for replica computations.

To start with we consider the training of a linear network in the teacher-student scenario. The
teacher has also to be linear to be learnable: we consider a simple single-layer network with additive
white Gaussian noise,Y = ~WteachX + � , with input x � N (0; I N ) of size N, teacher matrix ~Wteach

i.i.d. normally distributed as N (0; 1=N) , noise � � N (0; 0:01I N ), and output of size NY = 4 .
We train a student network of three USV-layers, plus one fully connected unconstrained layer
X ! T1 ! T2 ! T3 ! Ŷ on the regression task, using plain SGD for the MSE loss(Ŷ � Y )2. We
recall that in the USV-layers (7) only the diagonal matrix is updated during learning. On the left
panel of Figure 3, we report the learning curve and the mutual informations between the hidden
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(Î
re

p
�

I e
xa

ct
)2

� 10� 13 layer 1

max
mean

500 1000 1500
layers sizeN

0:0

0:2

0:4

0:6

0:8

(Î
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Figure 3: Training of a 4-layer linear student of varying size on a regression task generated by a
linear teacher of output sizeNY = 4 . Upper-left: MSE loss on the training and testing sets during
training by plain SGD for layers of sizeN = 1500. Best training loss is 0.004735, best testing loss is
0.004789. Lower-left: Corresponding mutual information evolution between hidden layers and input.
Center-left, center-right, right: maximum and squared error of the replica estimation of the mutual
information as a function of layers sizeN , over the course of 5 independent trainings for each value
of N for the �rst, second and third hidden layer.

layers and the input in the case where all layers but outputs have sizeN = 1500. Again this linear
setting is analytically tractable and does not require the replica formula, a similar situation was
studied in [5]. In agreement with their observations, we �nd that the mutual informations I (X ; T` )
keep on increasing throughout the learning, without compromising the generalization ability of the
student. Now, we also use this linear setting to demonstrate (i) that the replica formula remains
correct throughout the learning of the USV-layers and (ii) that the replica method gets closer and
closer to the exact result in the limit of large networks, as theoretically predicted(2). To this aim,
we repeat the experiment forN varying between100 and 1500, and report the maximum and the
mean value of the squared error on the estimation of theI (X ; T` ) over all epochs of 5 independent
training runs. We �nd that even if errors tend to increase with the number of layers, they remain
objectively very small and decrease drastically as the size of the layers increases.

Learning experiments with deep non-linear networks� Finally, we apply the replica
formula to estimate mutual informations during the training of non-linear networks on correlated
input data.

We consider a simple single layer generative modelX = ~WgenY + � with normally distributed
codeY � N (0; I NY ) of sizeNY = 100, data of sizeNX = 500 generated with matrix ~Wgen i.i.d.
normally distributed as N (0; 1=NY ) and noise� � N (0; 0:01I NX ). We then train a recognition
model to solve the binary classi�cation problem of recovering the labely = sign(Y1), the sign of
the �rst neuron in Y , using plain SGD but this time to minimize the cross-entropy loss. Note
that the rest of the initial code (Y2; ::YNY ) acts as noise/nuisance with respect to the learning task.
We compare two 5-layers recognition models with 4 USV- layers plus one unconstrained, of sizes
500-1000-500-250-100-2, and activations either linear-ReLU-linear-ReLU-softmax (top row of Figure
4) or linear-hardtanh-linear-hardtanh-softmax (bottom row). Because USV-layers only featureO(N )
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Figure 4: Training of two recognition models on a binary classi�cation task with correlated input
data and either ReLU (top) or hardtanh (bottom) non-linearities. Left: training and generalization
cross-entropy loss (left axis) and accuracies (right axis) during learning. Best training-testing
accuracies are 0.995 - 0.991 for ReLU version (top row) and 0.998 - 0.996 for hardtanh version
(bottom row). Remaining colums: mutual information between the input and successive hidden
layers. Insets zoom on the �rst epochs.

parameters instead ofO(N 2) we observe that they require more iterations to train in general. In
the case of the ReLU network, adding interleaved linear layers was key to successful training with 2
non-linearities, which explains the somewhat unusual architecture proposed. For the recognition
model using hardtanh, this was actually not an issue (see Supplementary Material for an experiment
using only hardtanh activations), however, we consider a similar architecture for fair comparison.
We discuss further the ability of learning of USV-layers in the Supplementary Material.

This experiment is reminiscent of the setting of [3], yet now tractable for networks of larger sizes.
For both types of non-linearities we observe that the mutual information between the input and all
hidden layers decrease during the learning, except for the very beginning of training where we can
sometimes observe a short phase of increase (see zoom in insets). For the hardtanh layers this phase
is longer and the initial increase of noticeable amplitude.

In this particular experiment, the claim of [3] that compression can occur during training even
with non double-saturated activation seems corroborated (a phenomenon that was not observed
by [5]). Yet we do not observe that the compression is more pronounced in deeper layers and its
link to generalization remains elusive. For instance, we do not see a delay in the generalization
w.r.t. training accuracy/loss in the recognition model with hardtanh despite of an initial phase
without compression in two layers. Further learning experiments, including a second run of this last
experiment, are presented in the Supplementary Material.
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4 Conclusion and perspectives

We have presented a class of deep learning models together with a tractable method to compute
entropy and mutual information between layers. This, we believe, o�ers a promising framework
for further investigations, and to this aim we provide Python packages that facilitate both the
computation of mutual informations and the training, for an arbitrary implementation of the model.

We observe in our high-dimensional experiments that compression does happen during learning,
even when using ReLU activations. While we did not observe a clear link between generalization
and compression in our setting, there are many directions to be further explored within the models
presented in Section 2. Studying the entropic e�ect of regularizers is a natural step to formulate
an entropic interpretation to generalization. Furthermore, while our experiments focused on the
supervised learning, the replica formula derived for multi-layer models is general and can be applied
in unsupervised contexts, for instance in the theory of VAEs. On the rigorous side, the greater
perspective remains proving the replica formula in the general case of multi-layer models, and further
con�rm that the replica formula stays true after the learning of the USV-layers. Another question
worth of future investigation is whether the replica method can be used to describe not only entropies
and mutual informations for learned USV-layers, but also the optimal learning of the weights itself.
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1 Replica formula for the entropy

1.1 Background

The replica method [1, 2] was �rst developed in the context of disordered physical systems where
the strength of interactions J are randomly distributed, J � PJ (J ). Given the distribution of
microstates x at a �xed temperature � � 1, P(x j�; J ) = 1

Z (�;J ) e� � H J (x ) , one is typically interested
in the average free energy

F (� ) = � lim
N !1

1
�N

EJ logZ (�; J ); (8)

from which typical macroscopic behavior is obtained. Computing (8) is hard in general, but can be
done with the use of speci�c techniques. The replica method in particular employs the following
mathematical identity

EJ logZ = lim
n! 0

EJ Z n � 1
n

: (9)

Evaluating the average on the r.h.s. leads, under thereplica-symmetry assumption, to an expression
of the form EJ Z n = e� �Nn extr q � (�; q) , where � (�; q) is known as thereplica-symmetric free energy,
and q are order parameters related to macroscopic quantities of the system. We then write
F (� ) = extrq � (�; q), so that computing F depends on solving the saddle-point equationsr q �

�
�
q� = 0 .

Computing (8) is of interest in many problems outside of physics [3, 4]. Early applications of the
replica method in machine learning include the evaluation of the optimal capacity and generalization
error of the perceptron [5, 6, 7, 8, 9]. More recently it has also been used in the study of problems
in telecommunications and signal processing, such as channel divison multiple access [10] and
compressed sensing [11, 12, 13, 14]. For a review of these developments see [15].

These particular examples all share the following common probabilistic structure
(

y � PY jZ (y jW x );

x � PX (x );
(10)

for �xed W and di�erent choices of PY jZ and PX ; in other words, they are all speci�c instances
of generalized linear models(GLMs). Using Bayes theorem, one writes the posterior distribution
of x as P(x jW; y ) = 1

P (W;y ) PY jZ (y jW x ) PX (x ); the replica method is then employed to evaluate
the average log-marginal likelihoodEW;y logP(W; y ), which gives us typical properties of the model.
Note this quantity is nothing but the entropy of y given W , H (y jW ).

The distribution PJ (or PW in the notation above) is usually assumed to be i.i.d. on the elements
of the matrix J . However, one can also use the same techniques to approachJ belonging to arbitrary
orthogonally-invariant ensembles. This approach was pioneered by [16, 17, 18, 19], and in the context
of generalized linear models by [20, 21, 22, 23, 24, 25, 26].

Generalizing the analysis of (10) to multi-layer models has �rst been considered by [27] in the
context of Gaussian i.i.d. matrices, and by [28, 29] for orthogonally-invariant ensembles. In particular,
[29] has an expression for the replica free energy which should be in principle equivalent to the one
we present, although its focus is in the derivation of this expression rather than applications or
explicit computations.

Finally, it is worth mentioning that even though the replica method is usually considered to be
non-rigorous, its results have been proven to be exact for di�erent classes of models, including GLMs
[30, 31, 32, 33, 34, 35], and are widely conjectured to be exact in general. In fact, in section 2 we
show how to proove the formula in the particular case of two-layer with Gaussian matrices.
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1.2 Entropy in single/multi-layer generalized linear models

1.2.1 Single-layer

For a single-layer generalized linear model
(

x � PX (x );

y � PY jZ (y jW x ):
(11)

with PX and PY jZ separable in the components ofx 2 RN and y 2 RM , and W 2 RM � N Gaussian
i.i.d., W�i � N (0; 1=N), de�ne � = M=N and � = Exx2. Then the entropy of y in the limit N ! 1
is given by [15, 35]

lim
N !1

N � 1H (y jW ) = min extr
A;V

� (A; V ); (12)

where

� (A; V ) = �
1
2

AV + I (x; x +
� 0p
A

) + �H (yj� 1; V; � ); (13)

with � 0, � 1 both normally distributed with zero mean and unit variance, and P(yj� ; V; � ) =R
D ~z PY jZ (yj

p
� � V � +

p
V ~z) (here D ~z denotes integration over a standard Gaussian measure).

This can be adapted to orthogonally-invariant ensembles by using the techniques described in
[22]. Let W = USVT , where U is orthogonal, S diagonal and arbitrary and V is Haar distributed.
We denote by � W (� W ) the distribution of eigenvalues ofW T W , and the second moment ofz = W x
by ~� = E� W

� � . The entropy is then written as N � 1H (y jW ) = min extr A;V; ~A; ~V � (A; V; ~A; ~V ), where

� (A; V; ~A; ~V ) = �
1
2

� ~AV + �A ~V � FW (AV )
�

+ I (x; x +
� 0p

~A
) + �H (yj� 1; ~V ; ~� ); (14)

and
FW (x) = min

�

�
2�� + ( � � 1) log(1 � � ) + E� W log[x� W + (1 � � )(1 � �� )]

	
: (15)

If the matrix is Gaussian i.i.d., � W (� W ) is Marchenko-Pastur andFW (AV ) = �AV . Extremizing
over A gives ~V = V , so that (13) is recovered. In this precise case, it has been proven rigorously in
[35].

1.2.2 Multi-layer

Consider the following multi-layer generalized linear model
8
>>>>>>><

>>>>>>>:

t0;i � x i � P0(x i );

t1;i � P1(t1;i jW1x );

t2;i � P2(t2;i jW2t 1);
...

tL;i � yi � PL (yjWL t L � 1);

(16)

where the W` 2 Rn ` � n ` � 1 are �xed, and the i index runs from 0 to n` . Using Bayes' theorem we can
write

P(t 0jt L ; W)=
1

P(t L ; W)

Z L � 1Y

`=1

dt `

LY

`=1

P(t ` jW` t ` � 1)P(t 0): (17)
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with W = f W`g`=1 ;:::;L . Performing posterior inference requires one to evaluate the marginal
likelihood

P(t L ; W) =
Z L � 1Y

`=0

dt `

LY

`=1

P(t ` jW` t ` � 1) P(t 0); (18)

which is in general hard to do. Our analysis employs the framework introduced in [27] to compute
the entropy of t L in the limit n0 ! 1 with ~� ` = n`=n0 �nite for ` = 1 ; : : : ; L

lim
n0 !1

n� 1
0 H (t L jW ) = min extr

A ;V ; ~A ; ~V
� (A ; V ; ~A ; ~V ); (19)

with the replica potential � given by

� (A ; V ; ~A ; ~V ) = �
1
2

LX

`=1

~� ` � 1
� ~A `V` + � `A ` ~V` � FW` (A `V` )

�
+ I (t0; t0 +

� 0p
~A1

) + (20)

+
L � 1X

`=1

~� `

�
H (t ` j� ` ; ~A `+1 ; ~V` ; ~� ` ) �

1
2

log(2�e ~A `+1 )
�

+ ~� L H (tL j� L ; ~VL ; ~� L ):

and the � normally distributed with zero mean and unit variance. The t ` in the expression above
are distributed as

P(t ` j� ` ; A; V; � ) =
Z

D ~�D ~z P` (t ` +
p

1=A~� j
p

� � V � ` +
p

V ~z); (21)

P(tL j� L ; V; � ) =
Z

D ~z PL (tL j
p

� � V �L +
p

V ~z): (22)

where
R

Dz (�) =
R

dz N (z; 0; 1) (�) denotes the integration over the standard Gaussian measure.

1.3 A simple heuristic derivation of the multi-layer formula

Formula (20) can be derived using a simple argument. Consider the caseL = 2 , where the model
reads 8

><

>:

t 0 � P0(t 0);

t 1 � P1(t 1jW1t 0);

t 2 � P2(t 2jW2t 1);

(23)

with t ` 2 Rn ` and W 2 Rn ` � n ` � 1 . For the problem of estimating t 1 given the knowledge oft 2, we
compute limn1 !1 n� 1

1 H (t 2jW1) using the replica free energy (14)

� (A2; V2; ~A2; ~V2)= �
1
2

� ~A2V2 + � 2A2 ~V2 � FW2 (A2V2)
�

+ (24)

+ I (t1; t1 +
~� 1p

~A2

) + � 2H (t2j� 2; ~V2; ~� 2): (25)

Note that

I (t1; t1 +
~� 1p
~A2

) = H
�
t1 +

~� 1p
~A2

�
� H

� ~� 1p
~A2

�

= H
�
t1 +

~� 1p
~A2

�
�

1
2

log(2�e ~A2):

(26)
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Moreover, H (t1 + ~� 1=
p

~A2) can be obtained from the replica free energy of another problem: that of
estimating t 0 given the knowledge of (noisy)t 1, which can again be written using (14)

lim
n0 !1

n� 1
0 H (t1 +

~� 1p
~A2

) = min extr
A 1 ;V1 ; ~A 1 ; ~V1

� 1(A1; V1; ~A1; ~V1); (27)

with

� 1(A1; V1; ~A1; ~V1)= �
1
2

� ~A1V1 + � 1A1 ~V1 � FW1 (A1V1)
�

+ (28)

+ I (t0; t0 +
� 0p

~A1

) + � 1H (t1j� 1; ~A1; ~V1; ~� 1); (29)

and the noise ~� 1 being integrated in the computation of H (t1j� 1), see (22). Replacing (26)-(29)
in (25) gives our formula (20) for L = 2 ; further repeating this procedure allows one to write the
equations for arbitrary L .

1.4 Formulation in terms of tractable integrals

While expression (20) is more easily written in terms of conditional entropies and mutual informations,
evaluating it requires us to explicitely state it in terms of integrals, which we do below. We �rst
consider the Gaussian i.i.d. In this case, the multi-layer formula was derived with the cavity and
replica method by [27], and we shall use their results here. Assuming thatW` 2 Rn ` � n ` � 1 such that
W`;�i � N (0; 1=n` � 1) and using the replica formalism, Claim 1 from the main text becomes, in this
case

lim
n0 !1

n� 1
0 H (t L jW ) = min extr

A ;V
� (A ; V ); (30)

with the replica potential � evaluated from

� (A ; V ) =
1
2

LX

`=1

~� ` � 1A ` (� ` � V` ) � K (A ; V ; � ); (31)

and

K(A ; V ; � ) = K 0(A1) +
L � 1X

`=1

~� `K ` (A `+1 ; V` ; � ` ) + ~� L K L (VL ; � L ): (32)

The constants� ` , ~� ` and � ` are de�ned as following1: � ` = n`=n` � 1, ~� ` = n`=n0, � ` =
R

dt P` � 1(t) t2.
Moreover

K ` (A; V; � ) = Eb;t;z;w jA;V;� logZ` (A; b; V; w); (33)

for 1 � ` � L � 1, and
K 0(A) = Eb;xjA logZ0(A; b);

K L (V; � ) = Ey;z;w jV;� logZL (y; V; w):
(34)

1Note that due to the central limit theorem, � ` can be evaluated from � ` � 1 using � ` =
R

dtdz P` (t jz)N (z; 0; � ` � 1) t2 .
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where

Z0(A; B )=
R

dx P0(x)e� 1
2 Ax 2+ Bx ;

Z` (A; B; V; ! )=
R

dtdz P` (t jz)N (z; !; V )e� 1
2 At 2+ Bt ;

ZL (y; V; ! )=
R

dz PL (yjz)N (z; !; V ): (35)

and the measures over which expectations are computed are

p0(b; x; A)= P0(x)N (b; Ax; A );

p` (b; t; z; w; A; V; � )= P` (t jz)N (b; At; A )N (z; w; V )N (w; 0; m); (36)

pL (y; z; w; V; � )= PL (yjz)N (z; w; V )N (w; 0; � � V ):

We typically pick the likelihoods P` so that Z` can be computed in closed-form, which allows for
a number of activation functions � linear, probit, ReLU etc. However, our analysis is quite general
and can be done for arbitrary likelihoods, as long as evaluating (33) and (34) is computationally
feasible.

Finally, the replica potential above can be generalized to the orthogonally-invariant case using
the framework of [22], which we have described in the previous subsection

� (A ; V ; ~A ; ~V ) = �
1
2

LX

`=1

~� ` � 1
� ~A `V` + � `A ` ~V` � FW` (A `V` )

�
+ I (t0; t0 +

� 0p
A1

) + (37)

+
L � 1X

`=1

~� `

�
H (t ` j� ` ; A `+1 ; V` ; ~� ` ) �

1
2

log(2�eA ` )
�

+ ~� L H (tL j� L ):

If the matrix W` is Gaussian i.i.d., the distribution of eigenvalues ofW T
` W` is Marchenko-Pastur

and one getsFW` (A `V` ) = � `A `V` , ~A ` = � `A ` , ~V` = V` , so that (31) is recovered. Moreover, for
L = 1 , one obtains the replica free energy proposed by [22, 23, 24].

1.4.1 Recovering the formulation in terms of conditional entropies

One can rewrite the formulas above in a simpler way. By manipulating the measures (36) one obtains

K 0(A; � ) = � I (x; b) +
1
2

A�; (38)

for x � P0(x) and b � N (b; Ax; A ). Introducing a standard normal variable � 0 and using the
invariance of mutual informations, this can be written as

K 0(A; � ) = � I (x; x +
p

1=A� 0) +
1
2

A�: (39)

Similarly
K L (V; � ) = � H (yjw; V ); (40)

for P(yjw; V ) =
R

dzPL (yjz)N (z; w; V) and P(w; V; � ) = N (w; 0; � � V ). Introducing standard
normal � L

K L (V; � ) = � H (yj� L ; V; � ): (41)
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where

P(yj� L ; V; � ) =
Z

D ~z PL (yj
p

� � V �L +
p

V ~z); (42)

and
R

D ~z (�) =
R

d~z N (z; 0; 1) (�) denotes integration over the standard Gaussian measure.
Finally, for the K `

K ` (A; V; � ) = � H (bjw; A; V; � ) +
1
2

A� +
1
2

log(2�eA ); (43)

for P(bjw; A; V ) =
R

dtdz N (b; At; A )P` (t jz)N (z; w; V ) and P(w; V; � ) = N (w; 0; � � V ). Introducing
standard normal � `

K ` (A; V; � ) = � H (t ` j� ` ; A; V ) +
1
2

A� +
1
2

log(2�eA ): (44)

where

P(t ` j� ` ; A; V; � ) =
Z

D ~�D ~z P` (t ` +
p

1=A~� j
p

� � V � ` +
p

V ~z): (45)

We can then rewrite (32) as

K(A ; V ; � ) =
1
2

LX

`=1

~� ` � 1A ` � ` � I (t0; t0 +
� 0p
A1

)�

�
L � 1X

`=1

~� `

�
H (t ` j� ` ; A `+1 ; V` ; � ` ) �

1
2

log(2�eA `+1 )
�

� ~� L H (tL j� L ; VL ; � L ):

(46)

Replacing in (31) yields

� (A ; V ) = �
1
2

LX

`=1

~� ` � 1A `V` + I (t0; t0 +
� 0p
A1

)+

+
L � 1X

`=1

~� `

�
H (t ` j� ` ; A `+1 ; V` ; � ` ) �

1
2

log(2�eA `+1 )
�

+ ~� L H (tL j� L ; VL ; � L ):

(47)

1.5 Solving saddle-point equations

In order to deal with the extremization problem in

lim
n0 !1

n� 1
0 H (t L jW ) = min extr

A ;V ; ~A ; ~V
� (A ; V ; ~A ; ~V ); (48)

one needs to solve the saddle-point equationsr f A ;V ; ~A ; ~V g� = 0 . In what follows we propose two
di�erent methods to do that: a �xed-point iteration, and the state evolution of the ML-VAMP
algorithm [28].
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1.5.1 Method 1: �xed-point iteration

We �rst introduce the following function, which is related to the derivatives of FW`

 ` (�; 
 ) = 1 � 

�
S`

�
� 
 � 1(1 � � )(1 � � ` � )

�� � 1; (49)

whereS` (z) = E� `
1

� ` � z is the Stieltjes transform of W T
` W` , see e.g. [36]. In our experiments we have

evaluated S approximately by using the empirical distribution of eigenvalues.
The �xed point iteration consist in looping through layers L to 1, �rst computing the #` which

minimizes (15), and ~V`

#(t )
` = arg min

�

h
� �  ` (�; A (t )

` V (t )
` )

i 2
;

~V (t )
` = #(t )

` =A(t )
` ;

(50)

then A (t+1)
` , which for layers 1 � ` � L � 1 comes from

A (t+1)
` = � Eb;t;z;w j ~� ` ; ~A ` +1 ; ~V`

@2
w logZ` ( ~A (t )

`+1 ; b; ~V (t )
` ; w); (51)

and for the L-th layer, from

A (t+1)
L = � Ey;z;w j ~� L ; ~VL

@2
w logZL (y; ~VL ; w): (52)

Finally, we recompute #` using A (t+1)
` , and ~A `

#
(t+ 1

2 )
` = arg min

�

h
� �  ` (�; A (t+1)

` V (t )
` )

i 2
;

~A (t )
` = � `#

(t+ 1
2 )

` =V(t )
` :

(53)

and move on to the next layer. After these quantities are computed for all layers, we compute all
the V` ; for 2 � ` � L

V (t+1)
` = Eb;t;z;w j ~� ` � 1 ; ~A ` ; ~V` � 1

@2
b logZ` ( ~A (t )

` ; b; ~V (t )
` � 1; w); (54)

and for the 1st layer
V (t+1)

1 = Eb;xj ~A 1
@b logZ1( ~A (t )

1 ; b): (55)

This particular order has been chosen so that ifW` is Gaussian i.i.d., � (t )
` = A (t )

` V (t )
` and one

recovers the state evolution equations in [27].
The set of initial conditions is picked so as to cover the basin of attraction of typical �xed points.

In our experiments we have chosen(A (0)
i;` ; V (0)

i;` ) 2 f (� � 1
` ; � ` ); (� � 1; � )g, with � = 10 � 10.

1.5.2 Method 2: ML-VAMP state evolution

While the �xed-point iteration above works well in most cases, it is not provably convergent. In
particular, it relies on a solution for � =  ` (�; A (t )

` V (t )
` ) being found, which might not happen

throughout the iteration.
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Algorithm 1 Compute entropy H (yL jW )

Require: f A (1)
i ; V (1)

i gn init
i =1 , � , tmax

for i = 1 ! ninit do (loop through initial conditions)
t  0
while D < � or t < t max do (at each time step . . . )

for ` = L ! 1 do (. . . loop through layers)

compute #(t )
` , ~V (t )

` using (50)

compute A (t+1)
` using (51) or (52)

compute #
(t+ 1

2 )
` , ~A (t )

` using (53)
end for
compute V (t+1)

` 8` using (54) or (55)

D  
P

` jV (t+1)
` � V (t )

` j
t  t + 1

end while
H i  � (A (t ) ; V (t ) ; ~A (t ) ; ~V (t ) )

end for
return min i H i

An alternative is to employ the state evolution (SE) of the ML-VAMP algorithm [ 28], which
leads to the same �xed points as the scheme above under certain conditions. Let us �rst look at the
single-layer case; the ML-VAMP SE equations read

A+
x =

1
V +

x (A �
x )

� A �
x ; A+

z =
1

V +
z (A+

x ; 1=A�
z )

� A �
z ; (56)

A �
x =

1
V �

x (A+
x ; 1=A�

z )
� A+

x ; A �
z =

1
V �

z (A+
z )

� A+
z ; (57)

where

V +
x (A) = Ex;z @2

B logZ0(A; Ax +
p

Az); (58)

V +
z (A; � 2) = � 2 lim

M !1

1
M

Tr
�
�(� T � + A� 2) � 1� T �

= � � 1� 2�
1 � A� 2 S(� A� 2)

�
; (59)

V �
x (A; � 2) = � 2 lim

N !1

1
N

Tr
�
(� T � + A� 2) � 1�

= � 2 S(� A� 2); (60)

V �
z (A) =

1
A

+
1

A2 Ey;w;z @2
w logZ1(y; w; 1=A)

| {z }
� �g(A )

: (61)

Combining (57) and (61) yields

1=A�
z =

1
�g(A+

z )
�

1
A+

z
: (62)

At the �xed points

Vx � V +
x = V �

x =
1

A+
x + A �

x
; Vz � V +

z = V �
z =

1
A+

z + A �
z

: (63)
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as well as

Vz =
1 � A+

x Vx

�A �
z

=
A �

x Vx

�A �
z

) �
A �

z

A �
z + A+

z
=

A �
x

A �
x + A+

x
(64)

One can show these conditions also hold for the above scheme, under the following mapping of
variables:

V = Vx ; ~A = A �
x ; ~V = 1=A+

z ; A = A �
z A+

z Vz = �g(A+
z ); � = A �

z Vz =
1

1 + A +
z

A �
z

: (65)

These equations are easily generalizable to the multi-layer case; the equations forA+
z and A �

x
remain the same, while the equations forA+

x and A �
z become

A+
x `

=
1

V +
x ` (A �

x ` ; 1=A+
z` � 1 )

� A �
x `

; (66)

A �
z` � 1

=
1

V �
z` � 1 (A �

x ` ; 1=A+
z` � 1 )

� A+
z` � 1

; (67)

where

V +
x `

(A; V ) = Eb;t;z;w @2
B logZ` (A; b; V; w); (68)

V �
z` � 1

(A; V ) =
1
A

+
1

A2 Eb;t;z;w @2
w logZ` (A; b; V; w): (69)

Note that the quantities in (58), (61), (68) and (69) were already being evaluated in the scheme
described in the previous subsection.

1.6 Further considerations

1.6.1 Mutual information from entropy

While in our computations we focus on the entropyH (T` ), the mutual information I (T` ; T` � 1) can
be easily obtained from the chain rule relation

I (T` ; T` � 1) = H (T` ) + ET` ;T` � 1 logPT` jT` � 1
(t ` jt ` � 1)

= H (T` ) +
Z

dz N (z; 0; ~� ` )
Z

dh P` (hjz) log P` (hjz); (70)

where in order to go from the �rst to the second line we have used the central limit theorem. In
particular if the mapping X ! T` � 1 is deterministic, as typically enforced in the models we use in
the experiments, thenI (T` ; T` � 1) = I (T` ; X ).

1.6.2 Equivalence in linear case

In the linear case,Y = WL WL � 1 � � � W1X + N (0; �) , our formula reduces to [22, 25, 37]

lim
N ! 1

N � 1I (Y ; X ) = min extr
A;V

�
�

1
2

AV �
1
2

G(� V=�) + I (x; x +
p

1=A� )
�

; (71)

where
G(x) = extr

�
f� E� log j� � � j + � xg � (log jxj + 1) ; (72)
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is also known as the integrated R-transform, with� the eigenvalues ofW T W , W � WL WL � 1 � � � W1.
If P0 is Gaussian, thenI (x; x +

p
1=A� ) = 1

2 log(1 + A); extremizing over A and V then gives

A = 1=V � 1; V = � S(� �) ; (73)

where S(z) is the Stieltjes transform of W T W . The mutual information can then be rewritten as

lim
N !1

N � 1I (Y ; X ) =
1
2

E� log(� + �) �
1
2

log � : (74)

This same result can be achieved analytically with much less e�ort, since in this casePY (y ) =
N (y ; 0; � I M + WW T ).

2 Proof of the replica formula by the adaptive interpolation method

2.1 Two-layer generalized linear estimation: Problem statement

One gives here a generic description of the observation model, that is a two-layer generalized linear
model (GLM). Let n0; n1; n2 2 N� and de�ne the triplet n = ( n0; n1; n2). Let P0 be a probability
distribution over R and let (X 0

i )n0
i =1

i.i.d.� P0 be the components of a signal vectorX 0. One �xes two
functions ' 1 : R � Rk1 ! R and ' 2 : R � Rk2 ! R, k1, k2 2 N. They act component-wise, i.e. if
x 2 Rm and A 2 Rm� k i then ' i (x ; A ) 2 Rm is a vector with entries [' i (x ; A )] � := ' i (x � ; A � ),
A � being the � -th row of A . For i 2 f 1; 2g, consider(A i;� )n i

� =1
i.i.d.� PA i where PA i is a probability

distribution over Rk i . One acquiresn2 measurements through

Y� = ' 2

� 1
p

n1

h
W2' 1

� W1X 0

p
n0

; A 1

�i

�
; A 2;�

�
+

p
� Z � ; 1 � � � n2 : (75)

Here (Z � )n2
� =1

i.i.d.� N (0; 1) is an additive Gaussian noise,� > 0, and W1 2 Rn1 � n0 , W2 2 Rn2 � n1 are
measurement matrices whose entries are i.i.d. with respect to (w.r.t.)N (0; 1). Equivalently,

Y� � Pout ;2

�
�

�
�
�

1
p

n1

h
W2' 1

� W1X 0

p
n0

; A 1

�i

�

�
(76)

where the transition density, w.r.t. Lebesgue's measure, is

Pout ;2
�
y
�
�x

�
=

Z
dPA 2 (a)

1
p

2� �
e� 1

2� (y� ' 2 (x;a)) 2
: (77)

Our analysis uses both representations(75) and (76). The estimation problem is to recoverX 0 from
the knowledge ofY = ( Y� )n2

� =1 , ' 1, ' 2, W1, W2, � , P0.
In the language of statistical mechanics, the random variablesY , W1, W2, X 0, A 1, A 2, Z are

called quenchedvariables because once the measurements are acquired they have a ��xed realization�.
An expectation taken w.r.t. all quenched random variables appearing in an expression will simply be
denoted by E without subscript. Subscripts are only used when the expectation carries over a subset
of random variables appearing in an expression or when some confusion could arise.

After de�nition of the Hamiltonian

H(x; a1; Y ; W1; W2) := �
n2X

� =1

ln Pout ;2

�
Y�

�
�
�

1
p

n1

h
W2' 1

� W1x
p

n0
; a1

�i

�

�
; (78)
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the joint posterior distribution of (x, a1) given the quenched variablesY , W1, W2 reads (Bayes
formula)

dP(x; a1jY ; W1; W2) =
1

Z (Y ; W1; W2)
dP0(x)dPA 1 (a1)e�H (x ;a1 ;Y ;W 1 ;W 2 ) ; (79)

dP0(x) =
Q n0

i =1 dP0(x i ) being the prior over the signal anddPA 1 (a1) :=
Q n1

i =1 dPA 1 (a1;i ). The
partition function is de�ned as

Z (Y ; W1; W2)

:=
Z

dP0(x)dPA 1 (a1)dPA 2 (a2)
n2Y

� =1

1
p

2� �
e

� 1
2�

�
Y� � ' 2

�
1p n 1

�
W 2 ' 1

�
W 1x
p n 0

;a1

��
�

;a2;�

�� 2

: (80)

One introduces a standard statistical mechanics notation for the expectation w.r.t. the posterior
(79), the so calledGibbs bracketh�i de�ned for any continuous bounded functiong as

hg(x; a1)i :=
Z

dP(x; a1jY ; W1; W2)g(x; a1) (81)

One important quantity is the associated averagedfree entropy (or minus the averagedfree energy)

f n :=
1
n0

E ln Z (Y ; W1; W2) : (82)

It is perhaps useful to stress thatZ (Y ; W1; W2) is nothing else than the density ofY conditioned
on W1; W2; so we have the explicit representation (used later on)

f n =
1
n0

EW 1 ;W 2

Z
dY Z (Y ; W1; W2) ln Z (Y ; W1; W2)

=
1
n0

EW 1 ;W 2

" Z
dY dP0(X 0)dPA 1 (A 1)e�H (X 0 ;A 1 ;Y ;W 1 ;W 2 )

� ln
Z

dP0(x)dPA 1 (a1)e�H (x ;a1 ;Y ;W 1 ;W 2 )

#

; (83)

where dY =
n2Q

� =1
dY� .

This appendix presents the derivation, thanks to the adaptive interpolation method, of the
thermodynamic limit limn!1 f n in the �high-dimensional regime�, namely whenn0; n1; n2 ! + 1
such that n2=n1 ! � 2 > 0, n1=n0 ! � 1 > 0. In this high-dimensional regime, the �measurement rate�
satis�es n2=n0 ! � := � 1 � � 2.

2.2 Important scalar inference channels

The thermodynamic limit of the free entropy will be expressed in terms of the free entropy of
simple scalar inference channels. This �decoupling property� results from the mean-�eld approach in
statistical physics, used through in the replica method to perform a formal calculation of the free
entropy of the model [2, 4]. This section presents these three scalar denoising models.
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The �rst channel is an additive Gaussian one. Let r � 0 play the role of a signal-to-noise
ratio. Consider the inference problem consisting of retrievingX 0 � P0 from the observation
Y0 =

p
r X 0 + Z0, where Z0 � N (0; 1) independently of X 0. The associated posterior distribution is

dP(xjY0) =
dP0(x)e

p
r Y0x� rx 2=2

R
dP0(x)e

p
r Y0x� rx 2=2

: (84)

The free entropy associated to this channel is just the expectation of the logarithm of the normalization
factor

 P0 (r ) := E ln
Z

dP0(x)e
p

r Y0x� rx 2=2 : (85)

The second scalar channel appearing naturally in the problem is linked toPout ;2 through the
following inference model. Suppose thatV; U i.i.d.� N (0; 1) where V is known, while the inference
problem is to recover the unknownU from the observation

eY0 � Pout ;2
�

� j
p

q V +
p

� � q U
�

; (86)

where � > 0, q 2 [0; � ]. The free entropy for this model, again related to the normalization factor of
the posterior dP(uj eY0; V ), is

	 Pout ;2 (q; � ) := E ln
Z

DuPout ;2
� eY0j

p
q V +

p
� � q u

�
; (87)

where Du = du(2� ) � 1=2e� w 2=2 is the standard Gaussian measure.

The third scalar channel to play a role is linked to the hidden layerX 1 := ' 1

�
W 1X 0=p

n0; A 1

�

of the two-layer GLM. Suppose that V; U i.i.d.� N (0; 1), where V is known. Consider the problem
of recoveringU from the observation Y 0

0 =
p

r' 1(
p

q V +
p

� � q U;A 1) + Z 0 where r � 0, � > 0,

q 2 [0; � ], Z 0 � N (0; 1) and A 1 � PA 1 . Equivalently, Y 0
0 � P (r )

out ;1(�j
p

q V +
p

� � q U) with

P (r )
out ;1(yjx) :=

Z
dPA 1 (a)

1
p

2�
e� 1

2 (y�
p

r' 1 (x;a)) 2
: (88)

From this last description, it is easy to see that the free entropy for this model is given by a formula
similar to (87). Introducing � ( � � ' 1(x; a)) , the Dirac measure centred on' 1(x; a), it reads

	
P ( r )

out ;1
(q; � ) = E ln

Z
DuP (r )

out ;1

�
Y 0

0 j
p

q V +
p

� � q u
�

= E ln
Z

DudPA 1 (a)dh
1

p
2�

e� 1
2 (Y 0

0 �
p

rh )2
�
�
h � ' 1(

p
q V +

p
� � q u;a)

�

= �
ln(2� ) + E[(Y 0

0)2]
2

+ E ln
Z

DudPA 1 (a)dhe
p

rhY 0
0 � rh 2

2 �
�
h � ' 1(

p
q V +

p
� � q u;a)

�
:

The second moment ofY 0
0 is simply E[(Y 0

0)2] = r E[' 2
1(T; A 1)] + 1 with T � N (0; � ), A 1 � PA 1 .

Hence

	
P ( r )

out ;1
(q; � ) = �

1 + ln(2 � ) + r E[' 2
1(T; A 1)]

2
+ 	 ' 1 (q; r; � ) (89)

where

	 ' 1 (q; r; � ) := E ln
Z

DudPA 1 (a)dhe
p

rhY 0
0 � rh 2

2 �
�
h � ' 1(

p
q V +

p
� � q u;a)

�
: (90)
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2.3 Replica-symmetric formula and mutual information

Our goal is to prove Theorem 1 that gives a single-letterreplica-symmetric formula for the asymptotic
free entropy of model (75), (76). The result holds under the following hypotheses:

(H1) The prior distribution P0 has a bounded support.
(H2) ' 1, ' 2 are boundedC2 functions with bounded �rst and second derivatives w.r.t. their �rst

argument.
(H3) W1, W2 have entries i.i.d. with respect toN (0; 1).

Let � 0 := E[(X 0)2] where X 0 � P0 and � 1 := E[' 2
1(T; A 1)] where T � N (0; � 0), A 1 � PA 1 . The

replica-symmetric potential (or just potential) is

f RS(q0; r0; q1; r1; � 0; � 1) :=  P0 (r0) + � 1	 ' 1 (q0; r1; � 0) + � 	 Pout ;2 (q1; � 1) �
r0q0

2
� � 1

r1q1

2
: (91)

Theorem 1 (Replica-symmetric formula). Suppose that hypotheses (H1), (H2), (H3) hold. Then,
the thermodynamic limit of the free entropy(82) for the two-layer generalized linear estimation model
(75), (76) satis�es

f 1 := lim
n!1

f n = sup
q12 [0;� 1 ]

inf
r 1 � 0

sup
q02 [0;� 0 ]

inf
r 0 � 0

f RS(q0; r0; q1; r1; � 0; � 1) : (92)

The limiting expression of the mutual information between the observations and the signal to
recover follows immediately of Theorem 1.

Corollary 1 (Single-letter formula for the mutual information) . The thermodynamic limit of the
mutual information for model (75), (76) between the observations and the signal to recover veri�es

i n :=
1
n0

I (X 0; A 1; A 2; Y jW1; W2) ���!
n!1

i 1 := � f 1 �
�
2

(1 + ln(2 � �)) : (93)

Proof. A simple calculation gives

1
n0

I (X 0; A 1; A 2; Y jW1; W2)

= �
1
n0

E ln P(Y jW1; W2) +
1
n0

E ln P(Y jX 0; A 1; A 2; W1; W2)

= � f n �
1

2n0�
E

"
n2X

� =1

�
Y� � ' 2

�h W2X 1

p
n1

i

�
; A 2;�

�� 2
#

�
n2

2n0
ln(2� �)

= � f n �
n2

2n0
�

n2

2n0
ln(2� �) :

2.4 Interpolating estimation problem

The proof of Theorem 1 follows the same steps than the proof of the replica formula for a one-layer
GLM in [35].

One introduces aninterpolating estimation problemthat interpolates between the original problem
(76) at t = 0 , t 2 [0; 1] being the interpolation parameter, and two analytically tractable problems at
t = 1 .

De�ne � 1(n0) := E
h

1
n1

n1P

i =1
(X 1

i )2
i

= E
h
' 2

1

�
[W 1X 0=p

n0]1; A 1;1
� i

. In Appendix A.2 one shows
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Proposition 1 (Convergence of� 1(n0) to � 1). Under the hypotheses (H1), (H2), (H3)

lim
n0 ! + 1

� 1(n0) = � 1 : (94)

Let q : [0; 1] ! [0; � 1(n0)] be a continuousinterpolation function and r � 0. De�ne

St;� :=

r
1 � t
n1

h
W2' 1

� W1X 0

p
n0

; A 1

�i

�
+

s Z t

0
q(v)dv V� +

s Z t

0
(� 1(n0) � q(v))dv U� (95)

where V� ; U�
i.i.d.� N (0; 1). AssumeV = ( V� )n2

� =1 is known and two kinds of observations are given:

8
<

:

Yt;� � Pout ;2( � j St;� ) ; 1 � � � n2;

Y 0
t;i =

p
r t ' 1

�h
W 1X 0
p

n0

i

i
; A 1;i

�
+ Z 0

i ; 1 � i � n1;
(96)

where (Z 0
i )

n1
i =1

i.i.d.� N (0; 1). Y t = ( Yt;� )n2
� =1 , Y 0

t = ( Y 0
t;i )n1

i =1 are our �time-dependent� observations.
De�ne, with a slight abuse of notations, st;� (x ; a1; u� ) � st;� as

st;� =

r
1 � t
n1

h
W2' 1

� W1x
p

n0
; a1

�i

�
+

s Z t

0
q(v)dv V� +

s Z t

0
(� 1(n0) � q(v))dv u� : (97)

One introduces theinterpolating Hamiltonian

H t (x ; a1; u; Y t ; Y
0

t ; W1; W2; V ) := �
n2X

� =1

ln Pout ;2(Yt;� jst;� )

+
1
2

n1X

i =1

h
Y 0

t;i �
p

r t ' 1

�h W1x
p

n0

i

i
; a1;i

�i 2
: (98)

It depends onW2 and V through the terms (st;� )n2
� =1 , and on W1 through both (st;� )n2

� =1 and the
sum over i 2 f 1; : : : ; n1g. The corresponding Gibbs bracketh�i t , which is the expectation operator
w.r.t. the t-dependent joint posterior distribution of (x ; a1; u) given (Y t ; Y 0

t ; W1; W2; V ) is de�ned
for every continuous bounded functiong on Rn0 � Rn2 as:

hg(x; a1; u)i t :=
1
Z t

Z
dP0(x)dPA 1 (a1)Du g(x; a1; u) e�H t (x ;a1 ;u ;Y t ;Y 0

t ;W 1 ;W 2 ;V ) : (99)

In (99), Du = (2 � ) � n 2=2
Q n2

� =1 du� e� u 2
� =2 is the n2-dimensional standard Gaussian distribution and

Z t � Z t (Y t ; Y 0
t ; W1; W2; V ) is the appropriate normalization, i.e.

Z t (Y t ; Y 0
t ; W1; W2; V ) :=

Z
dP0(x)dPA 1 (a1)Du e�H t (x ;a1 ;u ;Y t ;Y 0

t ;W 1 ;W 2 ;V ) : (100)

Finally, the interpolating free entropy is

f n (t) :=
1
n0

E ln Z t (Y t ; Y 0
t ; W1; W2; V ) : (101)
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2.5 Interpolating free entropy at t=0 and t=1

One veri�es easily that
(

f n (0) = f n � 1
2

n1
n0

;
f n (1) = ~f n0 ;n1 + n2

n0
	 Pout ;2

� R1
0 q(t)dt; � 1(n0)

�
+ n1

n0

ln 2�
2 :

(102)

In the expression off n (1), ~f n0 ;n1 denotes the free entropy of theone-layer GLM

Y 0
i =

p
r ' 1

�h W1X 0

p
n0

i

i
; A 1;i

�
+ Z 0

i ; 1 � i � n1; (103)

with (X 0
i )n0

i =1
i.i.d.� P0, (A 1;i )

n1
i =1

i.i.d.� PA 1 and (Z 0
i )

n1
i =1

i.i.d.� N (0; 1). Applying Theorem 1 of [35], then
(89), the free entropy ~f n0 ;n1 in the thermodynamic limit n0; n1 ! + 1 such that n1=n0 ! � 1 is

lim
n0 ;n1 ! + 1

~f n0 ;n1 = sup
q02 [0;� 0 ]

inf
r 0 � 0

 P0 (r0) + � 1	
P ( r )

out ;1
(q0; � 0) �

r0q0

2

= � � 1
1 + ln 2 � + r� 1

2
+ sup

q02 [0;� 0 ]
inf

r 0 � 0
 P0 (r0) + � 1	 ' 1 (q0; r ; � 0) �

r0q0

2
: (104)

From (102), by making use of (104) and Lemma 1 below, one obtains in the thermodynamic limit:

f n (1) = � � 1
1 + r� 1

2
+ � 	 Pout ;2

� Z 1

0
q(t)dt; � 1(n0)

�

+ sup
q02 [0;� 0 ]

inf
r 0 � 0

n
 P0 (r0) + � 1	 ' 1 (q0; r ; � 0) �

r0q0

2

o
+ On (1) : (105)

Here On (1) is a quantity that vanishes uniformly in the limit n0; n1; n2 ! + 1 . Lemma 1 justi�es

the identity n2
n0

	 Pout ;2

� R1
0 q(t)dt; � 1(n0)

�
= � 	 Pout ;2

� R1
0 q(t)dt; � 1(n0)

�
+ On (1).

Lemma 1 (Uniform upperbound on 	 Pout ;2 ). Assuming ' 2 is bounded, one has for all� � 0 and
q 2 [0; � ]

j	 Pout ;2 (q; � )j �
1 + ln(2 � �)

2
+

2 supj' 2j2

�
:

Proof. The upperbound Pout ;2
�
y
�
�x

�
�

p
2� �

� 1
directly implies

	 Pout ;2 (q; � ) � �
1
2

ln(2� �) :

By Jensen's inequality, one also has the lowerbound

	 Pout ;2 (q; � ) � E
Z

DudPA 2 (a) ln
1

p
2� �

e� 1
2� ( eY0 � ' 2 (

p
q V+

p
� � q u;a)) 2

� �
1

2�
E

Z
DudPA 2 (a)

�
' 2(

p
q V +

p
� � q U;a) � ' 2(

p
q V +

p
� � q u;a)

� 2

�
1 + ln 2 � �

2
:

Put together, these lower and upper bounds give the lemma.
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To conclude on that section, the interpolating model is such that:

� at t=0 , it recovers the two-layer GLM;

� at t=1 , it reveals one scalar inference channel associated to the term	 Pout ;2 and a one-layer
GLM whose formula for the free entropy ~f n0 ;n1 in the thermodynamic limit is already known
from [35].

2.6 Free entropy variation along the interpolation path

From the Fundamental Theorem of Analysisf n (1) � f n (0) =
R1

0
df n (t )

dt dt and (102), (105), it follows

f n = � � 1
r� 1

2
+ � 	 Pout ;2

� Z 1

0
q(t)dt; � 1(n0)

�
�

Z 1

0

df n (t)
dt

dt

+ sup
q02 [0;� 0 ]

inf
r 0 � 0

n
 P0 (r0) + � 1	 ' 1 (q0; r ; � 0) �

r0q0

2

o
+ On (1) : (106)

Most of the terms that form the potential (91) can already be identi�ed in the expression(106). For
the missing terms to appear, the t-derivative of the free entropy has to be computed �rst.

De�ne uy(x) := ln Pout ;2(yjx). Let u0
y(x) be the derivative (w.r.t. x). In Appendix B one shows

Proposition 2 (Free entropy variation). The derivative of the free entropy(101) veri�es, for all
t 2 (0; 1),

df n (t)
dt

= �
1
2

n1

n0
E

��
1
n1

n2X

� =1

u0
Yt;�

(St;� )u0
Yt;�

(st;� ) � r
�

�
Q̂ � q(t)

�
�

t

+
n1

n0

�
rq(t)

2
�

r� 1(n0)
2

�
+ On (1) ; (107)

where On (1) is a quantity that goes to0 in the limit n0; n1; n2 ! + 1 , uniformly in t 2 [0; 1], and
the overlap is

Q̂ :=
1
n1

n1X

i =1

' 1

�h W1X 0

p
n0

i

i
; A 1;i

�
' 1

�h W1x
p

n0

i

i
; a1;i

�
: (108)

2.7 Overlap concentration

We already know from [35] that the overlap Q = 1
n0

P n0
j =1 x j � X 0

j concentrates. This concentration

plays a key role in the proof of the thermodynamic limit of the free entropy ~f n0 ;n1 , still in [ 35]. The
next lemma states that the overlapQ̂ concentrates around its mean.

As in the one-layer case, a �small� perturbation to the interpolating estimation problem is
introduced by adding to the Hamiltonian (98) a term

n1X

i =1

�
2

' 2
1

�h W1x
p

n0

i

i
; a1;i

�
� �' 1

�h W1x
p

n0

i

i
; a1;i

�
' 1

�h W1X 0

p
n0

i

i
; A 1;i

�
�

p
�' 1

�h W1x
p

n0

i

i
; a1;i

�
bZ i (109)
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where ( bZ i )
n1
i =1

i.i.d.� N (0; 1). It corresponds to having extra observations coming from a side-channel

bYi =
p

�' 1

�h W1X 0

p
n0

i

i
; A 1;i

�
+ bZ i for i = 1 ; : : : ; n1 : (110)

It thus preserves the Nishimori identity (see Proposition 8). The new Hamiltonian de�nes a new
Gibbs bracket h�i t;� and free entropy f n;� (t). All the set up of Sec. 2.4 and Proposition 2 trivially
extend. This perturbation induces only a small change in the free entropy, namely of the order of� :

Lemma 2 (Small free entropy variation under perturbation). Let sup' 2
1 be the supremum of' 2

1
(well-de�ned under the hypothesis (H2)). For all � > 0 and all t 2 [0; 1],

jf n;� (t) � f n (t)j �
n1

n0|{z}
! � 1

sup' 2
1

2
� � : (111)

Proof. A simple computation gives @fn ;� (t )
@� = � n1

n0
EhL� i t;� where

L � :=
1
n1

n1X

i =1

1
2

' 2
1

�h W1x
p

n0

i

i
; a1;i

�
� ' 1

�h W1x
p

n0

i

i
; a1;i

�
' 1

�h W1X 0

p
n0

i

i
; A 1;i

�

�
1

2
p

�
' 1

�h W1x
p

n0

i

i
; A 1;i

�
bZ i :

In Appendix C.2 one proves Lemma 10, i.e.EhL� i t;� = � 1
2EhQ̂i t;� . The trivial bound jQ̂j � sup' 2

1
ends the proof.

Besides, this small perturbation forces the overlap to concentrate around its mean:

Lemma 3 (Overlap concentration). For any 0 < a < 1,

lim
n0 !1

Z 1

a
d�

Z 1

0
dt E


�
Q̂ � EhQ̂i t;�

� 2�
t;� = 0 : (112)

The proof of Lemma 3 is mostly the same as the one streamlined in Section V of [38]. One only
needs to make slight changes to �t the proof to our problem. For this reason, Appendix C.2 sketches
the main steps of theadapted proof and refers to [38] for details.
Lemma 3 implies that there exists a sequence(� (n0))n0 � 1 2 (0; 1)N�

that converges to0 such that

lim
n0 ! + 1

Z 1

0
dt E


�
Q̂ � EhQ̂i t;� (n0 )

� 2�
t;� (n0 ) = 0 : (113)

As (� (n0))n0 � 1 converges to0, f n;� (n0 ) (t) and f n (t) have the same limit (provided it exists) thanks to
Lemma 2. In the next section, to lighten the notations, the perturbation subscript � (n0) is abusively
removed since it makes no di�erence for computing the limit of the free entropy.
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2.8 Canceling the remainder

Note from (106) and (91) that the second term appearing in(107) is precisely the missing one that
is required to obtain the expression of the potential on the r.h.s. of(106) (recall Proposition 1 and
make the identi�cations r $ r1,

R1
0 q(t)dt $ q1). Hence, to prove Theorem 1, we would like to

�cancel� the Gibbs bracket in (107), which is the so calledremainder (once integrated overt). This
is made possible thanks to the adaptive interpolating parameterq. One has to chooseq(t) = EhQ̂i t ,
which is approximately equal to Q̂ because it concentrates (see Lemma 3). However,EhQ̂i t depends
on

Rt
0 q(v)dv (and on r too). The equation q(t) = EhQ̂i t is therefore a �rst order di�erential equation

over t 7!
Rt

0 q(v)dv.

Proposition 3 (Existence of the optimal interpolation function) . For all r � 0 the di�erential
equation

q(t) = EhQ̂i t (114)

admits a unique solutionq(r )
n0 (t) on [0; � 1(n0)] and the mapping

r � 0 7!
Z 1

0
q(r )

n0
(v)dv (115)

is continuous.

Proof. Under (H2) one veri�es easily that EhQ̂i t is a boundedC1 function of (
Rt

0 q(v)dv; r). The
proposition then follows from an application of the parametric Cauchy-Lipschitz theorem.

This optimal choice for the interpolating function allows to relate the free entropy to the potential.

Proposition 4. Let r � 0. For n0 2 N� , q(r )
n0 is the solution of (114). Then

f n = sup
q02 [0;� 0 ]

inf
r 0 � 0

f RS

�
q0; r0;

Z 1

0
q(r )

n0
(v)dv; r ; � 0; � 1(n0)

�
+ On (1) : (116)

Proof. By Cauchy-Schwarz inequality

�
�
�
�

Z 1

0
dt E

D� 1
n1

n2X

� =1

u0
Yt;�

(St;� )u0
Yt;�

(st;� ) � r
� �

Q̂ � q(r )
n0

(t)
� E

t

�
�
�
�

�
� Z 1

0
dt E

D� 1
n1

n2X

� =1

u0
Yt;�

(St;� )u0
Yt;�

(st;� ) � r
� 2E

t

� 1=2 � Z 1

0
dt E


�
Q̂ � q(r )

n0
(t)

� 2�
t

� 1=2

= On (1) :

The last equality uses that the �rst factor is bounded (independently oft) under assumptions (H1), (H2)
and (H3) (similar proof to the one in Appendix A.5 of [35]), and that the second factor goes to0
when n0; n1; n2 ! + 1 with � = � (n0) thanks to (113), (114). Making use of the latter result and
n1=n0 ! � 1, � 1(n0) ! � 1, the integral of (107) reads

Z 1

0

df n (t)
dt

dt = � 1
r
2

Z 1

0
q(r )

n0
(t)dt � � 1

r� 1

2
+ On (1) ; (117)

Replacing this identity in (106) gives the desired result.
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2.9 Lower and upper matching bounds

To end the proof of Theorem 1 one has to go through the following two steps:

(i) Prove that under assumptions (H1), (H2) and (H3)

lim
n!1

f n = sup
r 1 � 0

inf
q12 [0;� 1 ]

sup
q02 [0;� 0 ]

inf
r 0 � 0

f RS(q0; r0; q1; r1; � 0; � 1) :

(ii) Invert the order of the optimizations on r1 and q1.

To tackle (i), one proves that lim inf n0 !1 f n and lim supn0 !1 f n are � respectively � lowerbounded
and upperbounded by the same quantitysup

r 1 � 0
inf

q12 [0;� 1 ]
sup

q02 [0;� 0 ]
inf

r 0 � 0
f RS(q0; r0; q1; r1; � 0; � 1).

Proposition 5 (Lower bound). The free entropy (82) veri�es

lim inf
n0 !1

f n � sup
r � 0

inf
q2 [0;� 1 ]

sup
q02 [0;� 0 ]

inf
r 0 � 0

f RS

�
q0; r0; q; r; � 0; � 1

�
: (118)

Proof. By Proposition 4 we have that for any r � 0

f n � inf
q2 [0;� 1 (n0 )]

sup
q02 [0;� 0 ]

inf
r 0 � 0

f RS

�
q0; r0; q; r; � 0; � 1(n0)

�
+ On (1) : (119)

By a continuity argument

lim
n0 !1

inf
q2 [0;� 1 (n0 )]

sup
q02 [0;� 0 ]

inf
r 0 � 0

f RS

�
q0; r0; q; r; � 0; � 1(n0)

�

= inf
q2 [0;� 1 ]

sup
q02 [0;� 0 ]

inf
r 0 � 0

f RS

�
q0; r0; q; r; � 0; � 1

�
: (120)

This limit, combined with (119), gives

lim inf
n0 !1

f n � inf
q2 [0;� 1 ]

sup
q02 [0;� 0 ]

inf
r 0 � 0

f RS

�
q0; r0; q; r; � 0; � 1

�
: (121)

This is true for all r � 0, thus we obtain Proposition 5.

Proposition 6 (Upper bound). The free entropy (82) veri�es

lim sup
n0 !1

f n � sup
r � 0

inf
q2 [0;� 1 ]

sup
q02 [0;� 0 ]

inf
r 0 � 0

f RS

�
q0; r0; q; r; � 0; � 1

�
: (122)

Proof. Let K n0 = 2 � 2	 0
Pout ;2

(� 1(n0); � 1(n0)) , 	 0
Pout ;2

being the derivative of 	 Pout ;2 w.r.t. its �rst
argument. The latter is continuous and bounded (see Appendix A.2.2. of [35]). Also, (115) is a
continuous mapping. It follows that

[0; K n0 ] ! [0; K n0 ]

r 7! 2� 2	
0

Pout ;2

� R1
0 q(r )

n0 (t)dt; � 1(n0)
� (123)
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is continuous too. Therefore, it admits a �xed point

r � (n0) = 2 � 2	 0
Pout ;2

� Z 1

0
q(r � (n0 ))

n0
(t)dt; � 1(n0)

�
:

We now remark that

sup
q02 [0;� 0 ]

inf
r 0 � 0

f RS

�
q0; r0;

Z 1

0
q(r � (n0 ))

n0
(t)dt; r � (n0); � 0; � 1(n0)

�

= inf
q2 [0;� 1 (n0 )]

sup
q02 [0;� 0 ]

inf
r 0 � 0

f RS

�
q0; r0; q; r� (n0); � 0; � 1(n0)

�
: (124)

Indeed, the function

gr � (n0 ) : q 2 [0; � 1(n0)] 7! sup
q02 [0;� 0 ]

inf
r 0 � 0

f RS

�
q0; r0; q; r� (n0); � 0; � 1(n0)

�

is convex. To see it, �rst remember that

gr � (n0 ) (q) = � 	 Pout ;2

�
q; � 1(n0)

�
� � 1

r � (n0)
2

q + C ; (125)

whereC := supq0
inf r 0  P0 (r0) + � 1	 ' 1 (q0; r � (n0); � 0) � r0q0=2 does not depend onq. The convexity

of gr � (n0 ) then follows of the convexity of 	 Pout ;2

�
� ; � 1(n0)

�
(see Proposition 11 in Appendix A.2.2.

of [35]). gr � (n0 ) derivative is easily obtained from (125):

g0
r � (n0 ) (q) = � 	 0

Pout ;2

�
q; � 1(n0)

�
� � 1

r � (n0)
2

: (126)

By de�nition of r � (n0), g0
r � (n0 )

� R1
0 q(r � (n0 ))

n0 (t)dt
�

= 0 and the minimum of gr � (n0 ) is necessarily

achieved at
R1

0 q(r � (n0 ))
n0 (t)dt. Proposition 4, combined with (124), gives

f n = inf
q2 [0;� 1 (n0 )]

sup
q02 [0;� 0 ]

inf
r 0 � 0

f RS

�
q0; r0; q; r� (n0); � 0; � 1(n0)

�
+ On (1)

� sup
r � 0

inf
q2 [0;� 1 (n0 )]

sup
q02 [0;� 0 ]

inf
r 0 � 0

f RS

�
q0; r0; q; r; � 0; � 1(n0)

�
+ On (1) : (127)

Finally, by a continuity argument, we have

lim
n0 !1

sup
r � 0

inf
q2 [0;� 1 (n0 )]

sup
q02 [0;� 0 ]

inf
r 0 � 0

f RS

�
q0; r0; q; r; � 0; � 1(n0)

�

= sup
r � 0

inf
q2 [0;� 1 ]

sup
q02 [0;� 0 ]

inf
r 0 � 0

f RS

�
q0; r0; q; r; � 0; � 1

�
;

and taking the limit in the inequality (127) ends the proof:

lim sup
n0 !1

f n � sup
r � 0

inf
q2 [0;� 1 ]

sup
q02 [0;� 0 ]

inf
r 0 � 0

f RS

�
q0; r0; q; r; � 0; � 1

�
:
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It remains to prove (ii), i.e.

Proposition 7 (Switch the optimization order) . Under (H2), for any positive real numbers� 0 and
� 1 one has

sup
r 1 � 0

inf
q12 [0;� 1 ]

sup
q02 [0;� 0 ]

inf
r 0 � 0

f RS(q0; r0; q1; r1; � 0; � 1)

= sup
q12 [0;� 1 ]

inf
r 1 � 0

sup
q02 [0;� 0 ]

inf
r 0 � 0

f RS(q0; r0; q1; r1; � 0; � 1) :

Proof. Let f : [0; + 1 [! R and g : [0; � 1] ! R be the two functions

f (r1) := sup
q02 [0;� 0 ]

inf
r 0 � 0

n
 P0 (r0) + � 1	 ' 1 (q0; r1; � 0) �

r0q0

2

o
; g(q1) := � 	 Pout ;2 (q1; � 1) ;

such that  (r1; q1) := supq02 [0;� 0 ] inf r 0 � 0 f RS(q0; r0; q1; r1; � 0; � 1) = f (r1) + g(q1) � � 1
2 r1q1.

In Appendix A.3 it is shown that, under (H2), f is convex, Lipschitz and non-decreasing on
[0; + 1 [. Proposition 11 in Appendix A.2.2 of [35] states that, under (H2), g is convex, Lipschitz and
non-decreasing on[0; � 1]. The desired result is then obtained by applying Corollary 5 in Appendix E
of [35]:

sup
r 1 � 0

inf
q12 [0;� 1 ]

 (r1; q1) = sup
q12 [0;� 1 ]

inf
r 1 � 0

 (r1; q1) :

3 Numerical experiments

3.1 Activations comparison in terms of mutual informations

Here we assume the exact same setting as the one presented in the main text to compare activation
functions on a two-layer random weights network. We compare here the mutual information estimated
with the proposed replica formula instead of the entropy behaviors discussed in the main text. As
it was the case for entropies, we can see that the saturation of the double-side saturated hardtanh
leads to a loss of information for large weights, while the mutual informations are always increasing
for linear and ReLU activations.

3.2 Learning ability of USV-layers

To ensure weight matrices remain close enough to being independent during learning we instroduce
USV-layers, corresponding to a custom type of weight constraint. We recall that in such layers, weight
matrices are decomposed in the manner of a singular value decomposition,W` = U`S`V` , with by U`

and V` drawn from the corresponding Haar measures (i.e. uniformly among the orthogonal matrices
of given size), andS` contrained to be diagonal, being the only matrix being learned. In the main
text, we demonstrate on a linear network that the USV-layers ensure that the assumptions necessary
to our replica formula are met with learned matrices in the case of linear networks. Nevertheless,
a USV-layer of sizeN � N has only N trainable parameters, which implies that they are harder
to train than usual fully connected layers. In practice, we notice that they tend to require more
parameter updates and that interleaving linear USV-layers to increase the number of parameters
between non-linearities can signi�cantly improve the �nal result of training.
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Figure 5: Replica mutual informations between latent and input variables in stochastic networks
X ! T1 ! T2, with equally sized layersN = 1000, inputs drawn from N (0; I N ), weights from
N (0; � 2I N 2 =N), as a function of the weight scaling parameter� . An additive white Gaussian
noiseN (0; 10� 5I N ) is added inside the non-linearity. Left column: linear network. Center column:
hardtanh-hardtanh network. Right column: ReLU-ReLU network.

To convince ourselves that the training ability of USV-layers is still relevant to study learning
dynamics on real data we conduct an experiment on the MNIST dataset. We study the classi�cation
problem of the classical MNIST data set (60 000training images and10 000testing images) with
a simple fully-connected network featuring one non-linear (ReLU) hidden layer of 500 neurones.
On top of the ReLU-layer, we place a softmax output layer where the500� 10 parameters of the
weight matrix are all being learned in all the versions of the experiments. Conversely, before the
ReLU layer, we either (1) do not learn at all the 784� 500 parameters which then de�ne random
projections, (2) learn all of them as a traditional fully connected network, (3) use a combination of 2
(3a), 3 (3b) or 6 (3c) consecutive USV-layers (without any intermediate non-linearity). The best
train and test, losses and accuracies, for the di�erent architectures are given in Table 1 and some
learning curves are displayed on Figure 6. As expected we observe that USV-layers are acheiving
better classi�cation success than the random projections, yet worse than the unconstrained fully
connected layer. Interestingly, stacking USV-layers to increase the number of trainable parameters
allows to reach very good training accuracies, nevertheless, the testing accuracies do not bene�t
to the same extent from these additional parameters. On Figure 6, we can actually see that the
version of the experiment with 6 USV-layers over�ts the training set (green curves with testing losses
growing towards the end of learning). Therefore, particularly in this case, adding regularizers might
allow to improve the generalization performances of models with USV-layers.
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Figure 6: Training and testing curves for the training of a two-layer neural net on the classi�cation
of MNIST for di�erent constraints on the �rst layer (further details are given in Section3.2). For
each version of the experiment the outcomes of two independent runs are plotted with the same
color, it is not always possible to distinguish the two runs as they overlap.

3.3 Additional learning experiments on synthetic data

Similarly to the experiments of the main text, we consider simple training schemes with constant
learning rates, no momentum, and no explicit regularization.

We �rst include a second version of Figure 4 of the main text, corresponding to the exact same
experiment with a di�erent random seed and check that results are qualitatively identical.

We consider then a regression task created by a 2-layer teacher network of sizes 500-3-3, activations
ReLU-linear, uncorrelated input data distribution N (0; I NX ) and additive white Gaussian noise at
the output of variance 0:01. The matrices of the teacher network are i.i.d. normally distributed with
a variance equal to the inverse of the layer input dimension. We train a student network with 2
ReLU layers of sizes2500and 1000, each featuring 5 stacked USV-layers of same size before the
non linear activation, and with one �nal fully-connected linear layer. We use plain SGD with a
constant learning rate of 0.01 and a batchsize of 50. In Figure 8 we plot the mutual informations
with the input at the e�ective 10-hidden layers along the training. Except for the very �rst layer
where we observe a slight initial increase, all mutual informations appear to only decrease during
the learning, at least at this resolution (i.e. after the �rst epoch). We thus observe a compression
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First layer type # train
params

Train loss Test loss Train acc Test acc

Random (1) 0 0.1745 0.1860 95.05 (0.09) 94.61 (0.02)
Unconstrained (2) 784� 500 0.0012 0.0605 100. (0.00) 98.18 (0.06)
2-USV (3a) 2 � 500 0.0758 0.1326 97.80 (0.07) 96.10 (0.03)
3-USV (3b) 3 � 500 0.0501 0.1238 98.62 (0.05) 96.35 (0.04)
6-USV (3c) 6 � 500 0.0092 0.1211 99.93 (0.01) 96.54 (0.17)

Table 1: Training results for MNIST classi�cation of a fully connected 784-500-10 neural net with a
ReLU non linearity. The di�erent rows correspond to di�erent speci�cations of trainable parameters
in the �rst layer (1, 2, 3a, 3b, 3c) describe in the paragraph. We use plain SGD to minimize the
cross-entropy loss. All experiments use the same learning rate 0.01 and batchsize of 100 samples.
Results are averaged over 5 independent runs, and standard deviations are reported in parentheses.

Figure 7: Independent run outcome for Figure 4 of the main text. Training of two recognition
models on a binary classi�cation task with correlated input data and either ReLU (top) or hardtanh
(bottom) non-linearities. Left: training and generalization cross-entropy loss (left axis) and accuracies
(right axis) during learning. Best training-testing accuracies are 0.995 - 0.992 for ReLU version (top
row) and 0.998 - 0.997 for hardtanh version (bottom row). Remaining colums: mutual information
between the input and successive hidden layers. Insets zoom on the �rst epochs.

even in the absence of double-saturated non-linearities. We further note that in this case we observe
an accuentuation of the amount of compression with layer depth as observed by [39] (see second
plot of �rst row of Figure 8), but which we did not observe in the binary classi�cation experiment
presented in the main text. On Figure 9, we reproduce the �gure for a di�erent seed.
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Figure 8: Example of regression with a 10 hidden-layer student network: 5 USV-layers - ReLU
activation - 5 USV-layers - ReLu activation - 1 unconstrained �nal linear layer, on dataset generated
by a non-linear teacher network: ReLu-linear. Top row, �rst plot: training and testing MSE loss
along learning. Best train loss is0:015, best test loss is0:018. Top row, second plot: mutual
informations curves of the 10 hidden layers showing the slight accentuation of compression in deeper
layers. Remaining: mutual information from each layer displayed separately.

In a last experiment, we even show that merely changing the weight initialization can drastically
change the behavior of mutual informations during training while resulting in identical training
and testing �nal performances. We consider here a setting closely related to the classi�cation on
correlated data presented in the main text. The generative model is a a simple single layer generative
model X = ~WgenY + � with normally distributed code Y � N (0; I NY ) of sizeNY = 100, from which
data of sizeNX = 500 are generated with matrix ~Wgen i.i.d. normally distributed as N (0; 1=

p
NY )

and noise� � N (0; 0:01I NX ). The recognition model attempts to solve the binary classi�cation
problem of recovering the labely = sign(Y1), the sign of the �rst neuron in Y . Again the training is
done with plain SGD to minimize the cross- entropy loss and the rest of the initial code(Y2; ::YNY )
acts as noise/nuisance with respect to the learning task. On Figure 10 we compare 3 identical 5-layers
recognition models with sizes 500-1000-500-250-100-2, and activations hardtanh-hardtanh-hardtanh-
hartanh-softmax. For the model presented at the top row, initial weights were sampled according to
W`;ij � N (0; 4=N` � 1), for the model of the middle row N (0; 1=N` � 1) was used instead, and �nally
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Figure 9: Independent run outcome for Figure 8 of the Supplementary Material. Example of
regression with a 10 hidden-layer student network: 5 USV-layers - ReLU activation - 5 USV-layers -
ReLu activation - 1 unconstrained �nal linear layer, on dataset generated by a non-linear teacher
network: ReLu-linear. Top row, �rst plot: training and testing MSE loss along learning. Best train
loss is0:015, best test loss is0:019. Top row, second plot: mutual informations curves of the 10
hidden layers showing the slight accentuation of compression in deeper layers. Remaining: mutual
information from each layer displayed separately.

N (0; 1=4N ` � 1) for the bottom row. The �rst column shows that training is delayed for the weight
initialized at smaller values, but eventually catches up and reaches accuracies superior to0:97 both
in training and testing. Meanwhile, mutual informations have di�erent initial values for the di�erent
weight initializations and follow very di�erent paths. They either decrease during the entire learning,
or on the contrary are only increasing, or actually feature an hybrid path. We further note that it is
to some extent surprising that the mutual information would increase at all in the �rst row if we
expect the hardtanh saturation to instead induce compression. Figure 11 presents a second run of
the same experiment with a di�erent random seed. Findings are identical.

These observed di�erences and non-trivial observations raise numerous questions, and suggest
that within the examined setting, a simple information theory of deep learning remains out-of-reach.
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Figure 10: Learning and hidden-layers mutual information curves for a classi�cation problem with
correlated input data, using a 4-USV hardtanh layers and 1 unconstrained softmax layer, from 3
di�erent initializations. Top: Initial weights at layer ` of variance4=N` � 1, best training accuracy
0.999, best test accuracy 0.994. Middle: Initial weights at layer̀ of variance 1=N` � 1, best train
accuracy 0.994, best test accuracy 0.9937. Bottom: Initial weights at layer̀ of variance 0:25=N` � 1,
best train accuracy 0.975, best test accuracy 0.974. The overall direction of evolution of the mutual
information can be �ipped by a change in weight initialization without changing drastically �nal
performance in the classi�cation task.

A Proofs of some technical propositions

A.1 The Nishimori identity

Proposition 8 (Nishimori identity) . Let (X ; Y ) 2 Rn1 � Rn2 be a couple of random variables.
Let k � 1 and let X (1) ; : : : ; X (k) be k i.i.d. samples (given Y ) from the conditional distribution
P(X = � jY ), independently of every other random variables. Let us denoteh�i the expectation
operator w.r.t. P(X = � jY ) and E the expectation w.r.t. (X ; Y ). Then, for all continuous bounded
function g we have

Ehg(Y ; X (1) ; : : : ; X (k) )i = Ehg(Y ; X (1) ; : : : ; X (k� 1) ; X )i : (128)

Proof. This is a simple consequence of Bayes formula. It is equivalent to sample the couple(X ; Y )
according to its joint distribution or to sample �rst Y according to its marginal distribution and then
to sampleX conditionally to Y from its conditional distribution P(X = � jY ). Thus the (k +1) -tuple
(Y ; X (1) ; : : : ; X (k) ) is equal in law to (Y ; X (1) ; : : : ; X (k� 1) ; X ).
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Figure 11: Independent run outcome for Figure 10 of the Supplementary Material. Learning and
hidden-layers mutual information curves for a classi�cation problem with correlated input data, using
a 4-USV hardtanh layers and 1 unconstrained softmax layer, from 3 di�erent initializations. Top:
Initial weights at layer ` of variance 4=N` � 1, best training accuracy 0.999, best test accuracy 0.998.
Middle: Initial weights at layer ` of variance 1=N` � 1, best train accuracy 0.9935, best test accuracy
0.9933. Bottom: Initial weights at layer ` of variance 0:25=N` � 1, best train accuracy 0.974, best test
accuracy 0.973. The overall direction of evolution of the mutual information can be �ipped by a
change in weight initialization without changing drastically �nal performance in the classi�cation
task.

A.2 Limit of the sequence (� 1(n0))n0 � 1

Here one proves Proposition 1, i.e. that the sequence(� 1(n0))n0 � 1 converges to� 1 := E[' 2
1(T; A 1)]

where T � N (0; � 0), A 1 � PA 1 under the hypotheses (H1), (H2), (H3).
If � 0 = 0 then X 0 = 0 almost surely (a.s.) and� 1(n0) = E' 2

1(0; A 1) = � 1 for every n0 � 1,
making the result trivial.
From now on, assume� 0 > 0. Given X 0, one has

h
W 1X 0
p

n0

i

1
� N

�
0; kX 0k2

n0

�
. Therefore

� 1(n0) := E
�
' 2

1

� hW1X 0

p
n0

i

1
; A 1

��
= E

Z
dt dPA 1 (a)' 2

1(t; a)

exp� t2

2 kX 0k2

n 0q
2� kX 0k2

n0

= E
�
h

�
kX 0k2

n0

��
;

where h : v 7!
R

dtdPA 1 (a)' 2
1(t; a) 1p

2�v
exp( � t2=2v) is a function on ]0; + 1 [. It is easily shown to be

continuous under (H2) thanks to the dominated convergence theorem.
By the Strong Law of Large Numbers,kX 0k2=n0 converges a.s. to� 0. Combined with the continuity
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of h, one has

lim
n0 ! + 1

h
�

kX 0k2

n0

�
a.s.= h(� 0) = � 1 :

Noticing that jh (kX 0k2=n0)j � sup' 2
1, the dominated convergence theoremgives
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�
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h
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� �
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A.3 Properties of the third scalar channel

Proposition 9. Assume' 1 is bounded (as it is the case under (H2)). LetV; U i.i.d.� N (0; 1) and
� 0 � 0, q0 2 [0; � 0]. For any r � 0, Y 0(r )

0 =
p

r' 1(
p

q V +
p

� � q U;A 1) + Z 0 whereZ 0 � N (0; 1),
A 1 � PA 1 . The function

	 ' 1 (q0; � ; � 0) : r 7! E ln
Z
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�
Y 0(r )
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�
�p q V +

p
� � q u

�
:

is twice-di�erentiable, convex, non-decreasing and� 1
2 -Lipschitz on R+ . Then the function

f : r 7! sup
q02 [0;� 0 ]
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r 0 � 0

 P0 (r0) + � 1	 ' (q0; r ; � 0) �
r0q0

2

is convex, non-decreasing and
�
� 1

� 1
2

�
-Lipschitz on R+ .

Proof. For �xed � 0 and q0, let 	 ' 1 � 	 ' 1 (q0; � ; � 0). Note that

	 ' 1 (r ) = E
� Z

dy0
0

1
p

2�
e� 1

2 (y0
0 �

p
r' 1 (

p
q0V +

p
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p
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p
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2 ' 2
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p
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p
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�
:

With the properties imposed on' 1, all the domination hypotheses to prove the twice-di�erentiability
of  ' 1 are reunited. Denoteh�i r the expectation operator w.r.t. the joint posterior distribution

dP(u; ajY 0
0; V ) =

1
Z (Y 0

0; V )
Du dPA 1 (a)e

p
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0 ' 1 (
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q0V +
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� 0 � q0u;a)� r
2 ' 2

1 (
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q0V +
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where Z (Y 0
0; V ) is a normalization factor. Using Gaussian integration by parts and the Nishimori

property (Proposition 8), one veri�es that for all r � 0

	 0
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�
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Hence	 ' 1 is non-decreasing and convex. The Lipschitzianity follows simply from

�
�	 0

' 1
(r )

�
� �

1
2
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�E[' 2
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p
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�
� =

1
2

� 1 :

The Nishimori identity was used once again to obtain the penultimate equality. Finally, f properties
are direct consequences of its de�nition as the �sup inf� of convex, non-decreasing,� 1

2 -lipschitzian
functions.
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B Proof of Proposition 2

Recall u0
y(x) is the x-derivative of uy(x) := ln Pout ;2(yjx). Denote P0

out ;2(yjx) and P00
out ;2(yjx) the

�rst and second x-derivatives of Pout ;2(yjx), respectively. First one shows that for allt 2 (0; 1)

df n (t)
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= �
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; (129)

where the overlap is Q̂ := 1
n1

n1P
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i
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: (130)

Once this is done, one proves thatAn (t) goes to0 uniformly in t 2 [0; 1] as n0; n1; n2 ! + 1 (while
n1=n0 ! � 1, n2=n1 ! � 2), thus proving Proposition 2.

B.1 Proof of (129)

Recall de�nition (101). Once written as a function of the interpolating Hamiltonian (98), it becomes

f n (t)=
1
n0

EW 1 ;W 2 ;V

� Z
dY dY 0dP0(X 0)dPA 1 (A 1)DU (2� ) � n 1
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dP0(x)dPA 1 (a1)Du e�H t (x ;a1 ;u ;Y ;Y 0;W 1 ;W 2 ;V )
�
: (131)

Here, and from now on, one drops the dependence ont when writing Y and Y 0 as they are now
dummy variables on which the integration is performed. We will need the Hamiltoniant-derivative
H 0

t given by

H 0
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: (132)

The derivative of the interpolating free entropy for 0 < t < 1 thus reads

df n (t)
dt

= �
1
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E
�
H 0

t (X
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t
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where Z t � Z t (Y ; Y 0; W1; W2; V ) is de�ned in (100).
In the remaining part of this subsection B.1, to lighten notations, one will omit the second

argument of the function ' 1 except in a few occasions, i.e. one will write fori = 1 : : : n1
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i
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:

It does not hurt the understanding of the derivation of (129) as the latter relies on integration by
parts w.r.t. the Gaussian random variablesW1, W2, V , U , Z0.
Let �rst compute T1. For 1 � � � n2 one has from (95)
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By Gaussian integration by parts w.r.t (W2) �i , 1 � i � n1, the �rst expectation becomes
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In the last equality we used the identity u00
Y�

(x) + u0
Y�

(x)2 =
P 00

out ;2 (Y� jx)
Pout ;2 (Y� jx) .

Now one looks to the second expectation in the right hand side of(134). Using again Gaussian
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integrations by parts, but this time w.r.t V� ; U�
i.i.d.� N (0; 1), one similarly obtains
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Combining equations (134), (135) and (137) together gives us
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As seen from(132), (133) it remains to compute E
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Thus, by taking the sum,
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Therefore, for all t 2 (0; 1),
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To obtain (129), it remains to show that T2 is zero. According to the Nishimori identity (see
Proposition 8), one has
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From (132) one obtains
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Performing the same integration by parts than the ones leading to (138), one gets
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The last equality follows from a computation in the next section, see(147). Combining (142), (143)
and (144), one obtainsT2 = 0 .

B.2 Proof that An (t) vanishes uniformly as n0 ! 1

To get Proposition 2, the last step is to prove that An (t) � see de�nition (130) � vanishes uniformly
in t 2 [0; 1] as n0 ! + 1 , under conditions (H1)-(H2)-(H3). First we show that
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Once this is done, we use the fact that 1
n0

ln Z t concentrates aroundf n (t) to prove that An (t)
vanishes uniformly.
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Start by noticing the simple fact that
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This implies (145). Using successively (145) and the Cauchy-Schwarz inequality, we have
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Making once more use of the �tower property� of conditional expectation, one obtains
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Under condition (H2), it is not di�cult to show that there exists a constant C > 0 such that
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Combining now (151), (150) and (149) we obtain that
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It remains to prove the boundedness of1n1
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E
�
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�
E[X 1jX 0]
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(153)

and show that both terms in the right hand side are bounded.
First, the term E

�
Var(X 1jX 0)

�
. Conditionally on X 0, the random variables(X 1

i )1� i � n1 are i.i.d.
and

Var(X 1jX 0) =
n1X

i =1

Var(X 1
i jX 0) = n1Var(X 1

1 jX 0) : (154)

It follows that
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Under (H2), the expectation E
h
' 4
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1
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is bounded because' 1 is bounded.

Second, the termVar
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E[X 1jX 0]
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. We have

E[X 1jX 0] = n1 � E
�
' 2

1

�h W1X 0

p
n0

i

1
; A 1;1

� �
�
�
�X

0
�

= n1 � g(X 0
1 ; : : : ; X 0

n0
) (156)

where g(x1; : : : ; xn0 ) = E
h
' 2
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W 1xp

n0

i

1
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. The partial derivatives of g satisfy for 1 � j � n0
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where (157) was obtained by integrating by parts w.r.t. (W1)1j . Under the hypothesis (H1) the prior
P0 has bounded supportX � [� S; S]. Then, for every x 2 X n0 , we have

@g
@xj

(x1; : : : ; xn ) �
2S
n0

� (sup j' 0
1j2 + sup j' 1j � supj'

00

1 j) �
C
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; (158)
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for some constantC > 0. Here the hypothesis (H2) was used to bound the expectation in(157).
Thus, the function g satis�es the bounded di�erence property, i.e.8j 2 f 1; : : : ; n0g

sup
x 2X n 0 ;x0

j 2X
jg(x1; : : : ; x j ; : : : ; xn0 ) � g(x1; : : : ; x0

j ; : : : ; xn )j �
C
n0

sup
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j 2X
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j j �
2S � C
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: (159)

Applying Proposition 11 (see Appendix C.1) it comes
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and
1
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�
= n1 � Var

�
g(X 0)

�
�

n1

n0
C0: (161)

It ends the proof of 1
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E
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boundedness in the limitn0 !

+ 1 . Combining (148), (152) and the latter, it comes

jAn (t)j � K E
��

1
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ln Z t � f n (t)
� 2� 1=2

(162)

for some constantK > 0 and n0 large enough. The uniform convergence ofAn (t) then follows
from (162) and Theorem 2 in Appendix C.1, that statesE[(n� 1

0 ln Z t � f n (t))2] �����!
n0 ! + 1

0 uniformly

in t 2 [0; 1].

C Concentration of free entropy and overlaps

C.1 Concentration of the free entropy

In this section, one proves that the free entropy of the interpolation model studied in Sec. 2.4
concentrates around its expectation (uniformly in t), i.e. one proves Theorem 2 stated below. To
lighten the notations, one usesC(' 1; ' 2; � 1; � 2; S) to denote a generic positive constant depending
only on ' 1, ' 2, � 1, � 2, S. Remember that S is a bound on the signal absolute values. It is also
understood that the dimensionsn0, n1, n2 are large enough andn1=n0 ! � 1, n2=n1 ! � 2.

Theorem 2. Under assumptions (H1), (H2), (H3) one can �nd a positive constantC(' 1; ' 2; � 1; � 2; S)
such that
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1
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One recalls some setups and notations for the reader's convenience. The interpolating Hamiltonian
(97)-(98) is

�
n2X
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1
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; (164)
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where st;� (x ; a1; u� ) =
q

1� t
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h
W2' 1

�
W 1xp

n0
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�i

�
+ k1(t) V� + k2(t) u� with
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Pout ;2(Yt;� jst;� (x ; a1; u)) =
Z

dPA 2 (a2;� )
1

p
2� �

e� 1
2�

�
Yt;� � ' 2 (st;� (x ;a1 ;u � );a2;�

�� 2

=
Z

dPA 2 (a2;� )
1

p
2� �

e� 1
2� (� t;� (x ;a1 ;a2;� ;u � )+

p
� Z � )2

(165)

with

� t;� (x ; a1; a2;� ; u� ) := ' 2
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W2X 1
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From (164), (165), (166) the free entropy of the interpolating model reads
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where
1
n0

ln Ẑ t =
1
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ln
� Z
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; (168)

and

Ĥ t (x ; a1; a2; u) =
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From (166), (168), (169), note that ln Ẑ t=n0 has been written as a function ofZ, Z0, V , U , W2, W1,
A 2, X 1. Our goal is to show that the free energy(167) concentrates around its expectation. It is
enough to show that there exists a positive constantC(' 1; ' 2; � 1; � 2; S) such that Var

�
ln Ẑ t=n0

�
�

C(' 1 ;' 2 ;� 1 ;� 2 ;S)
n0

. This concentration property together with (167) implies (163), i.e. Theorem 2.
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First, the concentration w.r.t. all Gaussian variables Z; Z0; V ; U ; W2; W1 is shown thanks to the
classical Gaussian Poincaré inequality, then the concentration w.r.t.A 2, X 1 using classical bounded
di�erence arguments. The order in which the concentrations are proved matters. These two variance
bounds are recalled below. The reader can refer to [40] (Chapter 3) for detailed proofs of these
statements.

Proposition 10 (Gaussian Poincaré inequality). Let U = ( U1; : : : ; UN ) be a vector ofN independent
standard normal random variables. Letg : RN ! R be a continuously di�erentiable function. Then

Var(g(U )) � E
�
kr g(U )k2�

: (170)

Proposition 11. Let U � R. Let g : UN ! R a function that satis�es the bounded di�erence
property, i.e., there exists some constantsc1; : : : ; cN � 0 such that

sup
u1 ;:::u N 2U N

u0
i 2U

jg(u1; : : : ; ui ; : : : ; uN ) � g(u1; : : : ; u0
i ; : : : ; uN )j � ci ; for all 1 � i � N :

Let U = ( U1; : : : ; UN ) be a vector ofN independent random variables that takes values inU. Then

Var(g(U )) �
1
4

NX

i =1

c2
i : (171)

Finally, before starting the proof of Theorem 2, we point out that under the hypothesis (H2)
all the suprema supj' k j, supj'

0

k j, supj'
00

k j for k 2 f 1; 2g are well-de�ned, and for all i 2 f 1; : : : ; n1g
jX 1

i j � supj' 1j almost surely.

C.1.1 Concentration with respect to Gaussian random variables Z, Z0, V , U , W2, W1

In this subsection, as in B.1 and to lighten the notations, one will systemically omit the second
argument in the functions ' 1, ' 2 and their �rst and second derivatives w.r.t. to their �rst argument.
Here one provesln Ẑ t=n0 is close to its expectation w.r.t. the Gaussian random variablesZ, Z0, V , U ,
W2, W1, i.e.

Lemma 4. Let EG0 denotes the expectation w.r.t.Z, Z0, V , U , W2, W1 only. There exists a positive
constant C(' 1; ' 2; � 1; � 2; S) such that
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: (172)

Lemma 4 follows, by Pythagorean theorem, from the Lemmas 5, 6, 7 proven below.

Lemma 5. Let EZ ;Z 0 denotes the expectation w.r.t.Z; Z0only. There exists a constantC(' 1; ' 2; � 1; � 2; S) >
0 such that
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: (173)

53



Proof. Here g = ln Ẑ t=n0 is seen as a function ofZ, Z0 only and we work conditionally to all other
random variables. The norm of the gradient ofg reads
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: (174)

Each of these partial derivatives are of the form@g= � n� 1
0 h@Ĥ t i Ĥ t

where the Gibbs bracketh�i Ĥ t
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almost surely. Taking the expectation in (175) gives the lemma.

Lemma 6. Let EG denote the expectation w.r.t.Z, Z0, V , U , W2 only. There exists a constant
C(' 1; ' 2; � 1; � 2; S) > 0 such that
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Proof. Here g = EZ ;Z 0[ln Ẑ t ]=n0 is seen as a function ofV , U , W2 and we work conditionally to all
other random variables.
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Therefore
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Ĥ t

i �
�
�

�
1

n0
p

n1
EZ ;Z 0

h
(2 supj' 2j +

p
� jZ � j)� � 1(2 supj' 1j supj'

0

2j)
i

=
1

n0
p

n1

�
2 supj' 2j +

r
2�
�

�
� � 1(2 supj' 1j supj'

0

2j)

Putting these inequalities together one ends up with

kr gk2 =
n2X

� =1

�
�
�
�

@g
@V�

�
�
�
�

2

+
n2X

� =1

�
�
�
�

@g
@U�

�
�
�
�

2

+
n2X

� =1

n1X

i =1

�
�
�
�

@g
@(W2) �i

�
�
�
�

2

�
n2

n2
0

�
2 � 1(n0)

| {z }
! � 1

+ sup j' 1j2
�

 
2 supj'

0

2j
�

! 2 �
2 supj' 2j +

r
2�
�

� 2

:

Then the lemma follows once again of Proposition 10.

Lemma 7. Let EG0 denote the expectation w.r.t.Z, Z0, V , U , W2, W1 only. There exists a positive
constant C(' 1; ' 2; � 1; � 2; S) such that
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Proof. Here g = EG [ln Ẑ t ]=n0 is seen as a function ofW1 only and we work conditionally to the other
random variables. The partial derivatives ofg w.r.t. (W1) ij reads
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It follows that
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Integrating by parts w.r.t. (W2) �i we get
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Ĥ t

�

= EG

� D @� t;�

@(W2) �i

~� (ij )
t;�

E
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while for the last two we have
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Ĥ t

� �
�
�
�

� E
h
(2 supj' 2j +

p
� jZ � j)2

i
� S supj'

0

1j supj'
0

2j �
2 supj' 1j supj'

0

2j
p

n1

=
�

4 supj' 2j2 + � + 2 sup j' 2j

r
2�
�

�
� S supj'

0

1j supj'
0

2j �
2 supj' 1j supj'

0

2j
p

n1
;

�
�
�
�EG

� D
(� t;� +

p
� Z � )~� (ij )

t;�

E
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Putting all these inequalities together gives the existence of a positive constantC1(' 1; ' 2; � 1; � 2; S)
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Thus, it exists a positive constant C2(' 1; ' 2; � 1; � 2; S) satisfying
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@(W 1 ) ij

�
�
� � C2 ( ' 1 ;' 2 ;� 1 ;� 2 ;S)=n3=2
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any (i; j ) 2 f 1; : : : ; n1g � f 1; : : : ; n0g, and

kr gk2 =
n1X

i =1

n0X

j =1

�
�
�
�

@g
@(W1) ij

�
�
�
�

2

�
1
n0

�
n1

n0
� C2

2(' 1; ' 2; � 1; � 2; S) :

Applying Proposition 10 ends the proof.

C.1.2 Bounded di�erence with respect to A 2;�

Next one applies the variance bound of Lemma 11 to shown� 1
0 EG0[ln Ẑ t ] concentrates w.r.t. A 2,

while keepingX 1 �xed for the moment.

Lemma 8. Let EG0;A 2 denotes the expectation w.r.t.Z, Z0, V , U , W2, W1, A 2 only. There exists
a positive constantC(' 1; ' 2; � 1; � 2; S) such that

E

" �
EG0

�
1
n0

ln Ẑ t

�
� EG0;A 2

�
1
n0

ln Ẑ t

�� 2
#

�
C(' 1; ' 2; � 1; � 2; S)

n0
: (178)

Proof. Consider g = EG 0[ln Ẑ t ]=n0 as a function ofA 2 only.
Let � 2 f 1; : : : ; n2g. One wants to estimate the variation g(A 2) � g(A (� )

2 ) for two con�gurations A 2

and A (� )
2 with A (� )

2;� = A2;� for � 6= � . The notations Ĥ (� )
t and � (� )

t;� will denote the quantities Ĥ t and

� t;� where A 2 is replaced byA (� )
2 , respectively. By an application of Jensen's inequality one �nds

1
n0

EG0hĤ (� )
t � Ĥ t i Ĥ ( � )

t
� g(A ) � g(A (� ) ) �

1
n0

EG0hĤ (� )
t � Ĥ t i Ĥ t

(179)

where the Gibbs brackets pertain to the e�ective Hamiltonians (169). From (169) we obtain

Ĥ (� )
t � Ĥ t

=
1

2�

n2X

� =1

�
� (� )2

t;� � � 2
t;� + 2Z � (� (� )

t;� � � t;� )
�

=
1

2�

�
� (� )2

t;� � � 2
t;� + 2Z � (� (� )

t;� � � t;� )
�

:

Notice that
�
� � (� )2

t;� � � 2
t;� + 2Z � (� (� )

t;� � � t;� )
�
� � 8supj' 2j2 + 4 jZ � j supj' 2j. From (179) we conclude

that g satis�es the bounded di�erence property:

jg(A 2) � g(A (� )
2 )j �

2 supj' 2j
� n0

 

2 supj' 2j +

r
2
�

!

: (180)

Lemma 8 follows then by an application of Proposition 11.

C.1.3 Bounded di�erence with respect to X 1
i

One now proves the last lemma needed to get Theorem 2, i.e.
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Lemma 9. There exists a positive constantC(' 1; ' 2; � 1; � 2; S) such that
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�
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1
n0
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�� 2
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n0
: (181)

Proof. One sees thatn� 1
0 EG0;A 2 [ln Ẑ t ] is a function of X 1 only. Considerg(x1) = n� 1

0 E[ln Ẑ t jX 1 = x1].
Note that n� 1

0 EG0;A 2 [ln Ẑ t ] = g(X 1). We will show that g satis�es a bounded di�erence property,
then an application of Proposition 11 will end the proof.

Let i 2 f 1; : : : ; n1g and x1; x (i ) 2 [� supj' 1j; supj' 1j]n1 two vectors such that x(i )
j = x1

j for j 6= i .
For s 2 [0; 1] we de�ne  (s) = g(sx1 + (1 � s)x (i ) ). Hence (1) = g(x1) and  (0) = g(x (i ) ). If we
can prove that

j 0(s)j �
C(' 1; ' 2; � 1; � 2; S)

n0
8s 2 [0; 1] ; (182)

then the bounded di�erence property follows, namely

sup
x 1 ;x ( i )

jg(x1) � g(x (i ) )j �
C(' 1; ' 2; � 1; � 2; S)

n0
:

Let ~E[ � ] := E[ � jX 1 = sx1 + (1 � s)x (i ) ]. The derivative of  satis�es
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while for every � 2 f 1; : : : ; n2g integration by parts w.r.t. (W2) �i gives
�
�
�
�
~E
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p
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n1

for some positive constantC(' 1; ' 2; � 1; � 2; S). Hence the condition(182) is satis�ed, ending the
proof of the lemma.
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C.1.4 Proof of Theorem 2

From Lemmas 4, 8, 9 above, one obtains the bound

Var
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ln Ẑ t

n0

#

� E

"
ln Ẑ t
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n0
;

where the equality of the �rst line follows simply of the Pythagorean theorem. As mentioned before,
this implies Theorem 2 thanks to (167).

C.2 Concentration of the overlap

This section presents the main steps towards proving Lemma 3. The interested reader can �nd more
details in Section V of [38] where the proof method has been streamlined.

One denotes byh�i t;� the Gibbs measure associated to the perturbed Hamiltonian

H t (x ; a1; u; Y ; Y 0; W1; W2; V ) +

(
n1X
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�
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' 2
1

�h W1x
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i
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i
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i

i
; a1;i

�
bZ i

)

i.e., the sum of (98) and (109). As already explained, the addition of the second term can be seen
as having an extra Gaussian side-channel, described by(110). Hence the Nishimori identity (Propo-
sition 8) is preserved. The corresponding average free entropy is denotedf n;� (t) and we callFn;� (t) the
free entropy for a realization of the quenched variables, that isFn;� (t) = n� 1

0 ln Z t (Y ; Y 0; bY ; W1; W2; V ).
Let
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Up to the prefactor n� 1
1 this quantity is the derivative of the perturbation term in (109). The

�uctuations of the overlap Q̂ = 1
n1

n1P
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�
and those ofL � are related

through the identity
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To see it, �rst note that L � = 1
n1

n1P

i =1

1
2(x1

i )2 � X 1
i x1

i � 1
2
p

� x1
i

bZ i where x1
i := ' 1

�h
W 1xp

n0

i

i
; a1;i

�
,

X i
i := ' 1

�h
W 1X 0
p

n0

i

i
; A 1;i

�
. Then the full derivation in Appendix IX of [ 38] can be reproduced exactly

by doing the identi�cations X 1
i $ Si , x1

i $ X i , n1 $ n. Indeed, the proof in Appendix IX of [38]
only involves some algebra using the Nishimori identity (herex1 plays the role of a sample obtained
from the conditional distribution P(X 1 = �jY ; Y 0; bY ; W1; W2; V )) and integration by parts w.r.t.
the GaussianẐ i in the perturbation term. Besides, Appendix F.2 of [35] already remarked that
the precise form of the �rst term H t does not matter as long as it is a Hamiltonian whose Gibbs
distribution satis�es Nishimori identity. To illustrate this, we are going to prove the following lemma,
that is used to obtain (183) and is also useful to prove Lemma 2.

Lemma 10 (Formula for EhL� i t;� ). For any � > 0,

EhL� i t;� = �
1
2

EhQ̂i t;� : (184)

Proof. From L � de�nition we directly get
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The expectation E[X 1
i hx1

i i t;� ] in the sum easily simpli�es to
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i

� 2
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i
: (186)

These lines of computation just correspond to the Nishimori identity. We detailed them here to
make clear how Nishimory identity still applies to the random variablesx1, X 1.
The third expectation is dealt with an integration by parts w.r.t. Ẑ i :

E[hx1
i i t;� bZ i ] = E

�
@hx1

i i t;�

@bZ i

�
= E

� p
� (h(x1
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i i 2
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: (187)

Combining (185), (186), (187) gives the desired result:
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i i 2
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2

1
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2

EhQ̂i t;� :

Lemma 3 is then a direct consequence of the following:
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Proposition 12 (Concentration of L � on). Under assumptions (H1), (H2) and (H3) we have for
any 0 < a < 1,

lim
n0 ! + 1

Z 1

a
d� E



(L � � EhL� i t;� )2�

t;� = 0 : (188)

As for the one-layer case, the proof of this proposition is broken in two parts. Notice that

E


(L � � EhL� i t;� )2�

t;� = E


(L � � hL � i t;� )2�

t;� + E
�
(hL� i t;� � EhL� i t;� )2�

: (189)

Thus it su�ces to prove the two following lemmas. The �rst lemma expresses concentration w.r.t.
the posterior distribution (or �thermal �uctuations�).

Lemma 11 (Concentration of L � on hL� i EhL� i ). Under assumptions (H1), (H2) and (H3), we
have for any0 < a < 1,

lim
n0 ! + 1

Z 1

a
d� E
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(L � � hL � i t;� )2�

t;�

�
= 0 : (190)

Proof. The result is a consequence of the convexity properties of the free energy and the Nishimori
identity. The proof is similar to the one of Lemma 5.2 in Sec. V of [38]. Here we go quickly through
those steps just to illustrate the minor changes.
Let Fn;t (� ) = n� 1

0 ln Z t (Y ; Y 0; bY ; W1; W2; V ) and f n;t (� ) = EFn;t (� ). Note that in [ 38] the authors
work with free energies instead of free entropies, i.e.Fn;t is de�ned with a minus sign in front of the
logarithm. Here we have:
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where we made use of(184), (187) and dropped the indices inh�i t;� to lighten the notations. From
the last equation we get
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where to obtain the last inequality we used that the derivative df n ;t (� )
d� is non-negative. Finally
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�
1 +
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2

�
:

The second lemma expresses the concentration of the average overlap w.r.t. the realizations of
quenched disorder variables.

Lemma 12 (Concentration of hL� i on EhL� i ). Under assumptions (H1), (H2) and (H3), we have
for any 0 < a < 1,

lim
n0 ! + 1

Z 1

a
d� E

�
(hL� i t;� � E[hL� i t;� ])2�

= 0 : (191)

Proof. It is a consequence of the concentration of the free energy (see Theorem 2 in Appendix C.1).
The proof is similar to the one of Lemma 5.3 in Sec. V of [38], the main change being in the de�nition
of the functions ~F (� ), ~f (� ):

~F (� ) := Fn;t (� ) �
p

�
n0

n1X

i =1

(sup j' 1j) � j bZ i j ; ~f (� ) := f n;t (� ) �
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(sup j' 1j) � Ej bZ i j :

The addition of the second term makes~F (� ) convex, while ~f (� ) is convex too (note that f n;t (� ) was
already convex, as it can be shown by the same method than the one in Sec. V of [38]). The proof
of Lemma 5.3 in [38] can then be reproduced and choosing� = n� 1=4

0 leads to the bound

Z 1

a
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;

for some positive constantC and n0 large enough.
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