G. M. Clark, The multiple-channel cochlear implant : the interface between sound and the central nervous system for hearing , speech , and language in deaf people -a personal perspective, pp.791-810, 2006.

. Dietz, &. Volker, and K. Fouad, Restoration of sensorimotor functions after spinal cord injury, Brain: a journal of neurology, vol.137, 2013.

J. M. Schwalb and C. Hamani, The History and Future of Deep Brain Stimulation, vol.5, pp.3-13, 2008.

R. M. Reinhart, W. Xiao, L. J. Mcclenahan, and G. F. Woodman, Electrical Stimulation of Visual Cortex Can Immediately Improve Spatial Vision, Curr Biol, vol.26, issue.14, pp.1867-72, 2016.

E. Zrenner and D. Birch, Restoring vision to the blind: the new age of implanted visual prostheses. Restoring vision to the blind, Transl Vis Sci Technol, vol.3, 2014.

M. Alcaide, A. Taylor, M. Fjorback, V. Zachar, and C. P. Pennisi, Borondoped nanocrystalline diamond electrodes for neural interfaces: In vivo biocompatibility evaluation, Front. Neurosci, vol.10, issue.MAR, pp.1-9, 2016.

V. Castagnola, Parylene-based flexible neural probes with PEDOT coated surface for brain stimulation and recording, Biosens. Bioelectron, vol.67, pp.450-457, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01764256

S. Venkatraman, In vitro and in vivo evaluation of PEDOT microelectrodes for neural stimulation and recording, IEEE Trans. Neural Syst. Rehabil. Eng, vol.19, issue.3, pp.307-316, 2011.

D. Hukins, A. Mahomed, and S. Kukureka, Accelerated aging for testing polymeric biomaterials and medical devices, Med. Eng. Phys, vol.30, pp.1270-1274, 2008.

, General aging theory and simplified protocol for accelerated aging of medical devices, K. Hemmerich, Med. Plastic Biomater, vol.5, pp.16-23, 1998.

M. Bariatto and A. Fontes, Impedance Characterization and Modeling of Microelectrodes for Neural Recording, Natl. Inst. Astrophys. Opt. Electron, p.10