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Abstract. Despite its many advantages, the non-controllable and intermittent nature 

of renewable energy sources is adding further stress to the energy networks and 

hence, grid operators are often forced to curtail RES generation or to limit its further 

penetration in the most congested areas. Smart tri-generation districts (electricity, 

gas, heat) can be key to mitigate these issues and increase the renewable hosting 

capacity of the grid, provided their feature an optimal use of their energy conversion 

and storage capabilities. This paper presents a district energy management approach 

based on Multi-Agent System (MAS) that takes into consideration the tri-

energyvectors (electricity, gas, thermal). The optimization problem is solved in a 

distributed way based on the Alternating Direction Method of Multipliers with the 

objective of minimizing district costs and preliminary results show the efficiency 

of our approach to achieve this objective. 

Keywords: multi-agent systems · multi-vector energy management · distributed 

optimisation · energy conversion · ADMM. 

1 Introduction 

In line with the energy and climate objectives, the share of energy generated from 

Renewable Energy Sources (RES) such as wind or solar energy is continuously growing, 

e.g. representing 30% in Europe in 20161. Despite their many advantages, the intermittent 

and non-controllable nature of RES is adding further stress to the energy network and 

hence, grid operators are often forced to curtail RES generation or to limit its further 

penetration in the most congested areas. Smart tri-generation districts (electricity, gas and 

heat) can be key to mitigate these issues and increase the renewable hosting capacity of 

the grid, provided their feature advanced energy conversion and storage capabilities. 

Being equipped with boilers and heat pumps, the next generation of smart districts are 

capable of converting electricity into thermal energy, whereby excess energy can be 

stored thanks to their storage capacity. Analogously, power to gas technologies 

transforms the electricity into methane so that the latter can be reused (i.e. by a gas boiler) 

or exported to a gas network. Unfortunately, even if these three networks are closely 

physically linked, different energy carriers are usually considered separately in energy 

                                                           
1 http://www.eea.europa.eu/data-and-maps/indicators/overview-of-the-electricityproduction-

2/assessment 
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management solutions, resulting in an under-optimal use of the capabilities of energy 

systems. Thus, there is the need of management algorithms which will ensure that the 

right conversion/storage method is chosen to avoid curtailment and maximise efficiency, 

taking into account all energy carriers. The optimal management of buildings has been 

commonly addressed by means of centralised approaches, which aggregate all needed 

information to make central decisions at a central controller. For example, Xiao et al. [1] 

proposed a novel approach that aims to reduce peak hours electricity consumption. In 

addition, some research papers used predictions in order to improve the quality of the 

proposed algorithms [2,3]. However, the implementation of centralized approaches is 

typically not suitable for solving the multi-stakeholder district coordination due to the 

privacy and interoperability issues caused by a centralised optimisation strategy. In 

contrast, agent-based technology, which relies on dynamic, decentralised and hierarchical 

negotiation, is considered as a good solution for a smart grid communication because of 

the autonomy, reactivity, pro-activeness and collaborative capabilities of the agents [4]. 

For example, [5] proposes an agent that optimizes energy usage in commercial buildings 

by exploiting the flexibility of different occupants to hold event/meeting schedules. The 

work presented in [6] proposes a MAS-based control algorithm for building energy 

management system that is able to minimize energy costs while maximizing energy 

efficiency for all the energy zones using power system optimisations. Yuce et al. [7] 

presents a new scheduling algorithm for building energy management by using 

negotiation and optimisation algorithms. The proposed method requires (a) thermal 

energy modelling, (b) Artificial Neural Network (ANN) training, and (c) Genetic 

Algorithm-ANN (GAANN) based optimisation. This proposed algorithm integrates all 

building aspects: geo-metrical information, occupancy schedules, HVAC schedules and 

building materials details. Therefore, over the past years, some works have focused on 

designing new demand response schemes to better incentivise and coordinate the 

consumers. For example, in [8] authors formulated an energy consumption scheduling 

game, based on pricing tariffs which differentiate the energy usage in time and level. In 

order to minimize the peak-to-average ratio in aggregate load demand, the authors in [9] 

proposed to use a game theory for demand-side management. In the same context, a multi-

party energy management model for smart buildings (integrating PV systems and 

automatic demand response) based on non-cooperative game theory is proposed in [10]. 

To address these challenges this paper proposes a MAS energy platform to optimise 

simultaneously the different energy flows of the district. In this context, this paper 

proposes the following contributions: 

– We model the district multi-vector energy management problem by means of a 

multi-vector energy coordination network. 

– We distribute this cooperative network among different agents and we use the 

ADMM algorithm as a coordination mechanism among these agents. 

– We empirically evaluate our approach via simulations showing how the 

proposed approach can significantly reduce the district energy costs. 

The rest of this paper is organized as follows. We first formulate the district multi-vector 

energy management problem as an energy coordination network (Section 2.1), we 

continue by presenting the optimisation algorithms (Section 2.2) and by describing some 
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of the implemented agent models (Section 2.3). Finally, we present some simulation 

results (Section 3) and conclude (Section 4). 

2 Distributed District Multi-vector Energy Management 

The objective of district multi-vector energy management is to ensure an optimal use of 

energy at district-level. With this aim we propose to model the optimisation problem by 

means of an energy coordination network and solve it distributively using advanced 

optimisation schemes based on the ADMM algorithm. Our approach rely on predictions 

of consumption, RES and grid prices and performs a day-head optimisation providing the 

scheduling for the operations of the different district dispatchable devices (storages, 

converters, generator). 

2.1 Multi-vector Energy Coordination Networks 

Following [11], an energy coordination network consists of a set of terminals, T, a set of 

devices, D, and a set of nets, N. By definition, a terminal is defined as a connection that 

models the energy exchange between a (single) device and a (single) net. Thus, each 

terminal t ∈ T is associated to an energy flow pt = (pt(1),...,pt(H))∈ℝ H, over a time horizon 

H ∈ N+. A device is associated to one or more terminals (i.e. transfer points) through which 

it exchanges energy. For each device d ∈ D, d refers to: (1) the device; and (2) the set of 

terminals associated with the device itself. Furthermore, for all τ ∈ [1,H], pt(τ) is the 

energy consumed (if pt(τ) > 0, otherwise produced) by device d through terminal t, during 

the time step corresponding to τ. In this paper, we consider pd = {pd|t ∈ d} as the set of 

all power schedules associated with a device d. Then, pd  can be associated with a |d| × 
H matrix. In addition to |d| terminals, each device d is also associated with: (i) a cost 

function fd : ℝ |d|×H → ℝ that returns the operating cost of the device for a given energy 

schedule; and (ii) a set of constraints, Cd, that pd should satisfy in order to be a viable 

planning. Nets are energy exchange zones which constrain the energy schedules to satisfy 

physical constraints (i.e. energy balancing). We use the same notation for nets as we do 

for devices: every net n ∈ N has |n| terminals, an objective function fn : ℝ |n|×H → ℝ  and a 

set of constraints, Cn, that satisfy the energy balancing condition (∑t∈n  pt(τ) = 0, ∀τ ∈ 

[1,H]).  
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Fig.1: Multi-vector energy network. 

The global optimisation problem can be defined as follows: 

𝑚𝑖𝑛𝑝∈ℝ|𝑻|𝒙𝑯 ∑ 𝑓𝑑(𝑝𝑑) + 𝑑 ∈𝐷 ∑ 𝑓𝑛(𝑝𝑛)𝑛 ∈𝑁  (1) 

subject to ∀d ∈ D : pd ∈ Cd,∀n ∈ N : pn ∈ Cn 

where p = {pt|t ∈ T} is the set of all terminal power schedules of the network. Here, the 

energy cooperation network model is extended to model multiple energy vectors. Let T 
be the set of all terminals in the multi-vector energy coordination network. Let Te ⊆ T be 

the set of terminals corresponding to the electrical network (i.e. those containing transfer 

of electric energy). Similarly, we define as Tg ⊆ T and Th ⊆ T the set of terminals 

corresponding to the gas and heating network respectively. Fig.1 depicts a multi-vector 

energy network model for a generic district. Terminals corresponding to the heating flows 

(Th) are represented as red lines, terminals corresponding to electricity flows (Te) as blue 

lines and terminals corresponding to gas flows (Tg) as green lines. In a similar way, 

heating nets are represented by red squares, electricity nets by blue squares and gas nets 

by green squares. Devices are represented by circles (each with the colour of the network 

to which they form part or in two colours if they convert energy from one network to 

another). The district is composed of four houses (from left to right): one equipped with 

a power-to-heat (P2H) device (i.e. heat pump or an electric boiler) that is connected to 

the electricity network, two connected and heated by the district heating network (DHN), 
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and one equipped with a domestic gas-to-heat (G2H) device (i.e. a gas-fired boiler) that 

is connected to the gas network. On the generation side, we have one device for each 

possible thermal generator, each linked to the DHN through a net. Some of these 

generators are single-terminal devices, such as the gas-fuelled boiler and the solar thermal 

panels. Others such as G2H or P2H are two-terminal devices, having each terminal in a 

different network. All the buildings are connected to the electrical network even if their 

thermal energy is not supplied by electricity since they will have at least some baseline 

electrical load and possibly some local production (PV). 

Moreover, in addition to the electricity demand from the buildings, the electricity network 

is also connected to the heating network (through the P2H converter devices) and to the 

gas network (through the P2G device) which are seen as flexible loads. Unlike heating 

and electricity, for the gas network our focus is strictly on the P2G devices and 

consequently, buildings will only have a gas connection if they have a gas-fuelled boiler. 

Finally, the electrical and gas network have each a device (i.e. the electrical/gas utility 

device) that models the connection with the respective utility through which each network 

is able to import/export energy from outside the district at the stipulated contract prices. 

2.2 Optimisation Algorithm 

The assumption taken here is that there are multiple actors involved in the multi-vector 

optimizer that, even if they agree on cooperating/coordinating, they are interested on 

keeping locally the control of their actions as well as any sensitive data regarding its 

internal business model, preferences, or assets. This will cover scenarios where for 

example the different energy carriers correspond to multiple independent entities. In this 

case the optimization will be carried out independently by the three different energy 

carriers. It can also cover scenarios in which the different prosumers as owners of their 

flexibility want to keep the control of their behind-the meter assets or they do not want to 

communicate their preferences to an external entity. Following [11], the optimization 

problem from Eq.1 can be solved by a distributed iterative coordination protocol based 

on the ADMM. In more detail, given a scaling parameter ρ the ADMM algorithm follows 

the three steps below at each iteration k + 1:  

The device-minimization step (i.e. parallelized among devices): 

∀𝑑 ∈ 𝐷, 𝑝𝑑
𝑘+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑝𝑑∈𝐶𝑑

(𝑓𝑑(𝑝𝑑) +
𝜌
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The net-minimization step (i.e. parallelized among nets): 

∀𝑛 ∈ 𝑁, �̇�𝑛
𝑘+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑝𝑛∈𝐶𝑛

(𝑓𝑛( �̇�𝑛 ) +
𝜌

2
‖𝑝𝑛

𝑘+1  −  �̇�𝑛 + 𝑢𝑛
𝑘‖

2

2
) 

 

(3) 

The (price) scaled dual variables update (i.e. parallelized among nets): 
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∀𝑛 ∈ 𝑁, 𝑢𝑛
𝑘+1  = 𝑢𝑛

𝑘 + (𝑝𝑛
𝑘+1 − �̇�𝑛

𝑘+1) 

 

(4) 

 

 where u are the dual variables associated with the energy schedule p. The first step is 

achieved in parallel by all devices, and then the second and third step are achieved 

simultaniously by all nets. 

2.3 Models of Device Agents 

In this proposal, each device component is responsible for defining its local cost function 

and constraints as well as for implementing the device-minimization step (Eq.2). The 

next subsections detail these local sub-problems and optimisation steps for the two main 

technologies that are focus of this paper: thermal energy storage systems and converters. 

Thermal energy storage system A thermal energy storage system is a one terminal device 

that models a water storage tank2 which water temperature (ɛ) varies depending if it is 

taking in or delivering energy (i.e. if ps(τ) is positive or negative) and should be kept 

within minimum and maximum temperature limits, i.e. ɛmin ≤ ɛ(τ) ≤ ɛmax. Let ɛinit be the 

initial temperature of the water storage, i.e. ɛ(τ) = ɛinit. At each time step τ ∈ [1,H] the 

water storage temperature evolves as: 

ɛ(τ)= ɛ(τ -1) - ηL(τ) + 
𝜂

𝑉∙𝐷∙𝐶
 ps(τ) (5) 

where Cmin ≤ ps(τ) ≤ Cmax, η ∈]0,1] is the heat exchange efficiency, V is the volume of the 

storage tank, ηL(τ) are the tank losses and D,C are respectively constants related to the 

density and the specific heat of water. To resolve the take into consideration all device 

constraints, we use a Dykstra projection algorithm [12]. We set up the output yH,1 as a 

matrix of H values. We consider also a matrix InitialChargeH,1 that takes into 

consideration all losses, then Eq. 6 presents the calculation of the initial charge at a 

timestep τ: 

InitialCharge(τ)= 
1

𝜂
. (ɛinit-∑ ηL(τ))𝑖

𝜏=0   (6) 

Converter A converter is two-terminal device that transforms energy from one form (A) 

to another (B) such as converting electricity to heat. Electric boilers, gas boilers, heat 

pump and power to gas technology are modelled as converters devices. In this paper we 

use a simplified model for the converter which is based on three parameters: the minimum 

                                                           
2 This paper considers only water storage. 
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and maximum energy input (Cmin/Cmax) and the conversion efficiency factor (κ ∈ (0,1]). 

Formally, the conversion equation for each time step τ = 1...H is defined as follows: 

-pB(τ)= κ pA(τ) (7) 

where Cmin(τ) ≤ pA(τ) ≤ Cmax(τ). For these constraints, the device-minimisation step can 

be computed analytically, as a projection on a hyperplane [13]. 

3 Verification of the Proposal Performance 

Our simulations are carried out using JADE (Java Agent Development Framework) [14]. 

To show our proposal performance, we propose to simulate 2 scenarios with a time 

horizon H=12. In the first scenario, we simulate separated networks (1 heating network, 

1 electrical network and 1 gas network). The district electrical network is composed of 5 

baseline loads, 3 renewable energy sources and a connection to the electric utility through 

which electricity can be imported/exported at fixed prices (varying between 0.12 and 0.33 

€/unit for importing and fixed for 0.05 €/unit for exporting). The district heating network 

is composed of 5 baseline loads, 3 renewable energy sources, 1 thermal energy storage 

system and 1 generator with a price of 0.16 €/unit. The district gas network is composed 

of 5 baseline loads and one connection to the gas utility from which the district can import 

energy at the fixed price of 0.05 €/unit. In the second scenario, we connected all networks 

via converters (P2H, P2G and G2H with κ = 0.8, Cmin=0 and Cmax=10). As data for the 

baseline loads, we use the domestic unrestricted consumers Elexon load profile [15]. The 

data for renewable energy sources are retrieved from [16] and varies between 0 and 1.25. 

Thermal storage parameters are defined in Simulation parameters defined in [17] with 

D=1.7°c/h, V=7570 liters, C=4.18 KJ/Kg°c, Cmax=90, Cmin=90, ɛinit=10°c. Fig. 2 (a)-(c) 

shows the average cost per unit in both scenarios and for each network. First thing to 

observe is that for the heating network Fig.2 (b) the price per unit in the second scenario 

is zero since all the energy is produced either by heating RES or via converters imported 

from the other two networks. Instead, for the electrical network (see Fig.2(a)) the cost of 

electricity for the first period is higher in the second scenario, since the excess of RES 

energy is exported to the heating network using the P2H converter and hence, the network 

does not receive the export price from the grid. Similarly, the cost per unit of the gas 

network is higher in the second scenario since the network exports through the G2H 

converter part of the energy. Fig.2 (d) shows the total cost considering the three networks 

for the two scenarios. We observe here how there is a significant reduction on the district 

costs when optimising the three networks together. 

 



540 J. Klaimi and M. Vinyals 

 

 
 

(a) Electrical                                           (b) Heating 

 
(c)  Gas                                                         (d) Total cost 

Fig.2: Average costs using both scenarios for each network 

4 Conclusions and Future Works 

In this paper, we proposed a distributed energy management for an eco-district taking into 

consideration all energy vectors. We resolved the optimisation problem using ADMM 

and implemented it as a MAS. Using different experimental inputs and via simulations, 

we showed the accuracy and the performance of the proposed approach. The results in 

this paper can be extended in several directions. First, the considered model can be 

generalized to include more devices (i.e. electrical vehicles, co-generation, etc.). 

Moreover, given all predictions we can extend all devices to optimise their decisions at 

each time slot according to the variations of predictions. Then, we plan to consider a 

dynamic scheduling of the control using closed loop control by which the steps are 
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scheduled and adjusted regarding some external perturbations that cannot be predicted at 

the original time when the schedules were computed. 
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