F. Jonietz, Spin Transfer Torques in MnSi at Ultralow Current Densities, Science, vol.330, pp.1648-1651, 2010.

T. Schulz, Emergent electrodynamics of skyrmions in a chiral magnet, Nat. Phys, vol.8, pp.301-304, 2012.

A. Fert, V. Cros, and J. Sampaio, Skyrmions on the track, Nat. Nano, vol.8, pp.152-156, 2013.

U. K. Rossler, A. N. Bogdanov, and C. Pfleiderer, Spontaneous skyrmion ground states in magnetic metals, Nature, vol.442, pp.797-801, 2006.

S. Muhlbauer, Skyrmion Lattice in a Chiral Magnet, Science, vol.323, pp.915-919, 2009.

X. Z. Yu, Real-space observation of a two-dimensional skyrmion crystal, Nature, vol.465, pp.901-904, 2010.

I. Kézsmárki, Neel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8, Nat. Mater, vol.14, pp.1116-1122, 2015.

X. Z. Yu, Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe, Nat. Mater, vol.10, pp.106-109, 2011.

S. Seki, X. Z. Yu, S. Ishiwata, and Y. Tokura, Observation of Skyrmions in a Multiferroic Material, Science, vol.336, pp.198-201, 2012.

Y. Tokunaga, A new class of chiral materials hosting magnetic skyrmions beyond room temperature, Nat. Commun, vol.6, p.7638, 2015.

P. Milde, Unwinding of a Skyrmion Lattice by Magnetic Monopoles, Science, vol.340, pp.1076-1080, 2013.

S. Heinze, Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions, Nat. Phys, vol.7, pp.713-718, 2011.

C. Moreau-luchaire, Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature, Nat. Nano, vol.11, pp.444-448, 2016.

S. S. Parkin, M. Hayashi, and L. Thomas, Magnetic domain-wall racetrack memory, Science, vol.320, pp.190-194, 2008.

S. Yang, K. Ryu, and S. S. Parkin, Domain-wall velocities of up to 750 ms ?1 driven by exchange-coupling torque in synthetic antiferromagnets, Nat. Nano, vol.10, pp.221-226, 2015.

S. S. Parkin and S. Yang, Memory on the Racetrack. Nat. Nano, vol.10, pp.195-198, 2015.

A. N. Bogdanov and D. A. Yablonsky, Thermodynamically Stable Vortexes in Magnetically Ordered Crystals -Mixed State of Magnetics, Sov. Phys. JETP, vol.68, pp.101-103, 1989.

A. Bogdanov and A. Hubert, Thermodynamically stable magnetic vortex states in magnetic crystals, J. Magn. Magn. Mater, vol.138, pp.255-269, 1994.

O. Boulle, Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures, Nat. Nano, vol.11, pp.449-454, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01271350

S. Woo, Observation of room-temperature magnetic skyrmions and their currentdriven dynamics in ultrathin metallic ferromagnets, Nat. Mater, vol.15, pp.501-506, 2016.

W. Jiang, Blowing magnetic skyrmion bubbles, Science, vol.349, pp.283-286, 2015.

A. N. Bogdanov, U. K. Rößler, M. Wolf, and K. H. Müller, Magnetic structures and reorientation transitions in noncentrosymmetric uniaxial antiferromagnets, Phys. Rev. B, vol.66, p.214410, 2002.

W. Koshibae and N. Nagaosa, Theory of antiskyrmions in magnets, Nat. Commun, vol.7, p.10542, 2016.

S. Zhang, A. K. Petford-long, and C. Phatak, Creation of artificial skyrmions and antiskyrmions by anisotropy engineering, Sci. Rep, vol.6, p.31248, 2016.

T. Tanigaki, Real-Space Observation of Short-Period Cubic Lattice of Skyrmions in MnGe, Nano Lett, vol.15, pp.5438-5442, 2015.

J. Jeong, Termination layer compensated tunnelling magnetoresistance in ferrimagnetic Heusler compounds with high perpendicular magnetic anisotropy, Nature Comm, vol.7, 2016.

A. K. Nayak, Design of compensated ferrimagnetic Heusler alloys for giant tunable exchange bias, Nat. Mater, vol.14, pp.679-684, 2015.

R. Sahoo, Compensated Ferrimagnetic Tetragonal Heusler Thin Films for Antiferromagnetic Spintronics, Adv. Mater, vol.28, pp.8499-8504, 2016.

A. K. Nayak, Large Zero-Field Cooled Exchange-Bias in Bulk Mn 2 PtGa, Phys. Rev. Lett, vol.110, p.127204, 2013.

O. Meshcheriakova, Large non-collinearity and spin-reorientation in the novel Mn 2 RhSn Heusler magnet, Phys. Rev. Lett, vol.113, p.87203, 2014.

B. Jamijansuren, Mn 3 Pt 2 Sn 2 -A vacancy stabilized Heusler-like compound, 2017.

T. Graf, C. Felser, and S. S. Parkin, Simple rules for the understanding of Heusler compounds, Prog. Solid State Chem, vol.39, pp.1-50, 2011.

Y. F. Li, Robust Formation of Skyrmions and Topological Hall Effect Anomaly in Epitaxial Thin Films of MnSi, Phys. Rev. Lett, vol.110, p.117202, 2013.

K. Karube, Robust metastable skyrmions and their triangular-square lattice structural transition in a high-temperature chiral magnet, Nat. Mater, vol.15, pp.1237-1242, 2016.

H. Oike, Interplay between topological and thermodynamic stability in a metastable magnetic skyrmion lattice, Nat. Phys, vol.12, pp.62-66, 2016.

J. Barker and O. A. Tretiakov, Static and Dynamical Properties of Antiferromagnetic Skyrmions in the Presence of Applied Current and Temperature, Phys. Rev. Lett, vol.116, p.147203, 2016.

, Schematic in-plane arrangement of the moments in a Bloch skyrmion (green arrows) and the Lorentz deflections of the transmitted electrons (shown in red arrows) to give a ring type LTEM pattern of the deflected electrons (lower part of the figure). h, In-plane spin arrangement of an antiskyrmion, For an antiskyrmion the magnetization rotates both as a transverse helix (within the dashed rectangles 1and 3 in b) and as a cycloid (within the dashed rectangles 2 and 4 in b). g

, of helical magnetic structure and skyrmions, respectively. The insets of e depicts the sinusoidal change of the in-plane magnetization with period of the helix

, Under-focused LTEM image taken at a, 350 K in a field of 0.22 T, b, 100 K and field of 0.33 T and c, 100 K and zero field. A single antiskyrmion in zero field is shown inside a dashed circle. d, Magnetic isotherms, M (H), at different temperatures for Mn 1.4 Pt 0.9 Pd 0.1 Sn. The data are normalized by dividing the magnetization value at 1 T. e, H-T phase diagrams for Mn 1.4 PtSn derived from the LTEM measurements with field along [001]. The phase diagram represents different phases at different field and temperature values, helical phase (H, *), skyrmions (skx, *), mixed phase of helical and skyrmions (H+skx, *), field polarized state (FP) and mixed phase of skyrmions and field polarized (skx+FP, *)