Multiple-Relaxation-Time Lattice Boltzmann scheme for fractional advection–diffusion equation

Abstract : Partial differential equations (p.d.e) equipped with spatial derivatives of fractional order capture anomalous transport behaviors observed in diverse fields of Science. A number of numerical methods approximate their solutions in dimension one. Focusing our effort on such p.d.e. in higher dimension with Dirichlet boundary conditions, we present an approximation based on Lattice Boltzmann Method with Bhatnagar-Gross-Krook (BGK) or Multiple-Relaxation-Time (MRT) collision operators. First, an equilibrium distribution function is defined for simulating space-fractional diffusion equations in dimensions 2 and 3. Then, we check the accuracy of the solutions by comparing with i) random walks derived from stable Lévy motion, and ii) exact solutions. Because of its additional freedom degrees, the MRT collision operator provides accurate approximations to space-fractional advection-diffusion equations, even in the cases which the BGK fails to represent because of anisotropic diffusion tensor or of flow rate destabilizing the BGK LBM scheme.
Complete list of metadatas

Cited literature [48 references]  Display  Hide  Download

https://hal-cea.archives-ouvertes.fr/cea-01900173
Contributor : Alain Cartalade <>
Submitted on : Tuesday, April 9, 2019 - 2:39:03 PM
Last modification on : Tuesday, October 1, 2019 - 11:45:51 AM

File

Car.pdf
Files produced by the author(s)

Identifiers

Citation

Alain Cartalade, Amina Younsi, Marie-Christine Neel. Multiple-Relaxation-Time Lattice Boltzmann scheme for fractional advection–diffusion equation. Computer Physics Communications, Elsevier, 2019, 234, pp.40 - 54. ⟨10.1016/j.cpc.2018.08.005⟩. ⟨cea-01900173⟩

Share

Metrics

Record views

152

Files downloads

92