Time-resolved inner-shell photoelectron spectroscopy: From a bound molecule to an isolated atom - Archive ouverte HAL Access content directly
Journal Articles Physical Review A : Atomic, molecular, and optical physics Year : 2018

Time-resolved inner-shell photoelectron spectroscopy: From a bound molecule to an isolated atom

(1) , (1) , (2) , (3) , (3) , (3) , (2) , (2) , (4) , (3) , (3) , (5, 6) , (5, 7) , (2) , (4) , (4) , (8) , (4) , (9, 10) , (2) , (9, 10) , (4) , (8) , (2) , (2) , (8) , (3) , (11) , (9) , (11) , (4) , (1) , (4, 12) , (4, 12) , (3) , (5, 7) , (13) , (3) , (3) , (3, 14) , (4) , (9, 10) , (15) , (2) , (9) , (4) , , (4) , (1) , (13)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Rebecca Boll
  • Function : Author
  • PersonId : 981223
Per Johnsson
Jan Lahl
Stuart Mackenzie
  • Function : Author
  • PersonId : 901828
Sylvain Maclot
David Holland
  • Function : Author

Abstract

Due to its element and site specificity, inner-shell photoelectron spectroscopy is a widely used technique to probe the chemical structure of matter. Here, we show that time-resolved inner-shell photoelectron spectroscopy can be employed to observe ultrafast chemical reactions and the electronic response to the nuclear motion with high sensitivity. The ultraviolet dissociation of iodomethane (CH3I) is investigated by ionization above the iodine 4d edge, using time-resolved inner-shell photoelectron and photoion spectroscopy. The dynamics observed in the photoelectron spectra appear earlier and are faster than those seen in the iodine fragments. The experimental results are interpreted using crystal-field and spin-orbit configuration interaction calculations, and demonstrate that time-resolved inner-shell photoelectron spectroscopy is a powerful tool to directly track ultrafast structural and electronic transformations in gas-phase molecules.

Dates and versions

cea-01894499 , version 1 (12-10-2018)

Identifiers

Cite

Felix Brausse, Gildas Goldsztejn, Kasra Amini, Rebecca Boll, Sadia Bari, et al.. Time-resolved inner-shell photoelectron spectroscopy: From a bound molecule to an isolated atom. Physical Review A : Atomic, molecular, and optical physics, 2018, 97 (4), ⟨10.1103/PhysRevA.97.043429⟩. ⟨cea-01894499⟩
352 View
0 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More