S. Tuohy, M. Glavin, C. Hughes, E. Jones, M. Trived et al., Intra-vehicle networks: A Review, IEEE Transactions on Intelligent Transportation Systems, vol.16, pp.534-545, 2014.

S. Biswas, R. Tatchikou, and F. Dion, Vehicle-to-vehicle wireless communication protocols for enhancing highway traffic safety, IEEE Communications Society, vol.44, pp.74-82, 2006.

M. Kissai, B. Monsuez, and A. Tapus, Current and future architectures for integrated vehicle dynamics control, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01690780

K. Koscher, Experimental security analysis of a modern automobile, 2010.

C. Miller and C. Valasek, Adventures in automotive networks and control units, 2014.

S. Checkoway, Comprehensive experimental analyses of automotive attack surfaces, 2012.

P. Kleberger, T. Olovsson, and E. Jonsson, Security aspects of the in-vehicle network in the connected car, Intelligent Vehicles Symposium (IV), 2011.

V. Chandola, Anomaly detection: a survey, ACM Computing Surveys, vol.41, p.15, 2009.

E. Keogh, Efficiently finding the most unusual time series subsequence, ICDM '05 Proceedings of the Fifth IEEE International Conference on Data Mining, pp.226-233, 2005.

A. Nanduri and L. Sherry, Anomaly detection in aircraft data using Recurrent Neural Networks, 2016.

P. Filonov, A. Lavrentyev, and A. Vorontsov, Multivariate industrial time series with cyber-attack simulation: fault detection using an LSTM-based predictive data model, 2016.

M. Yadav, P. Malhotra, L. Vig, K. Sriram, and G. Shroff, Augmented training improves anomaly detection in sensor data from machines, NIPS Time-series Workshop, 2015.

P. Malhotra, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal et al., LSTM-based encoder-decoder for multi-sensor anomaly detection, ICML 2016 Anomaly Detection Workshop, 2016.

I. Kiss, P. Haller, and A. Bere?, Denial of Service attack detection in case of tennessee eastman challenge process, Procedia Technology, vol.19, pp.835-841, 2015.

L. Chiang, Fault detection and diagnosis in industrial systems, Measurement Science and Technology, vol.12, issue.10, 2001.

L. Martí, Anomaly detection based on sensor data in petroleum industry applications, Physical Sensors, 2015.

D. Matteson and N. James, A non-parametric approach for multiple change point analysis of multivariate data, 2013.

P. Malhotra, L. Vig, G. Shroff, and P. Agarwal, Long Short Term Memory Networks for anomaly detection in time series, 2015.

S. Chauhan and L. Vig, Anomaly detection in ECG time signals via deep long short-term memory networks, Data Science and Advanced Analytics (DSAA), 2015.

T. Shea, T. Clancy, and R. Mcgwier, Recurrent neural radio anomaly detection, 2016.

M. Kang and J. Kang, Intrusion detection system using deep neural network for in-vehicle network security, Plos One, 2016.
DOI : 10.1371/journal.pone.0155781

URL : https://doi.org/10.1371/journal.pone.0155781

A. Taylor, S. Leblanc, and N. Japkowicz, Anomaly detection in automobile control network data with long short-term memory networks, Data Science and Advanced Analytics (DSAA), 2016.
DOI : 10.1109/dsaa.2016.20

J. Moreno, A. Pol, and P. Gracia, Artificial neural networks applied to forecasting time series, Psicothema, vol.23, issue.2, pp.322-329, 2011.

F. Gers, D. Eck, and J. Schmidhuber, Applying LSTM to time series predictable through time-window approaches, 2002.
DOI : 10.1007/978-1-4471-0219-9_20

URL : http://www.idsia.ch/~felix/./My_papers/P-ICANN.ps.gz

R. Kohavi, A Study of cross-validation and bootstrap for accuracy estimation and model selection, International Joint Conference on Artificial Intelligence (IJCAI), 1995.

J. Bergstra and Y. Bengio, Random search for hyper-parameter optimization, JMLR, vol.13, pp.281-305, 2012.

Y. Bengio, Practical recommendations for gradient-based training of deep architectures, Neural Networks: Tricks of the Trade, pp.437-478, 2012.
DOI : 10.1007/978-3-642-35289-8_26

URL : http://arxiv.org/pdf/1206.5533.pdf

S. Bittl, Performance comparison of data serialization schemes for ETSI ITS Car-to-X communication systems, International Journal on Advanced Telecommunications, pp.48-58

A. Singh and V. Tripathi, Load Forecasting Using Multi-Layer Perceptron Neural Network, IJESC, vol.6, issue.5, 2016.

S. Canu, Y. Grandvalet, and X. Ding, One step ahead forecasting using multilayered perceptron