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ABSTRACT

An efficient estimation of the State of Charge (SoC) of a bat-
tery is a challenging issue in the electric vehicle domain. The

battery behavior depends on its chemistry and uncontrolled

usage conditions, making it very difficult to estimate the SoC.
This paper introduces a new model for SoC estimation given

instantaneous measurements of current and voltage using a

Switching Markov State-Space Model. The unknown param-

eters of the model are batch learned using a Monte Carlo ap-

proximation of the EM algorithm. Validation of the proposed

approach on an electric vehicle real data is encouraging and

shows the ability of this new model to accurately estimate the

SoC for different usage conditions.

Index Terms— State of Charge, Kalman Filter, Switch-

ing Markov State-Space Model, EM algorithm, Particle Filter

1. INTRODUCTION

Nowadays, to achieve better fuel efficiency and reduce toxic

emissions, more and more vehicles are powered with an elec-

tric motor. Similarly to the fuel gauge in an internal combus-

tion engine vehicle, the State of Charge (SoC) of the battery
in an electric vehicle indicates its available energy. Besides,

beyond the framework of the automobile industry, the SoC
estimation helps prevent overcharge and deep discharge of the

battery, which may cause a permanent damage.

A battery being a complex electrochemical system, there

is no sensor to measure its SoC. Embedded applications,

like electric vehicles, impose hardware and time constraints.

Therefore, the SoC must be accurately online estimated. A

review of methods and models used for SoC estimation as

well as their performances in embedded applications is given

in [1]. The two most common approaches for SoC estima-

tion are founded on the “Coulomb counting” model and on a

general state-spacemodel. The Coulomb countingmodels the

SoC by a weighted summation of the input and output battery
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currents. Despite its simplicity, this method is an open loop

and the error of the current sensor can drift the estimation. As

a result, this method requires an accurate, thus expensive, cur-

rent sensor. A general state-space model, combines the SoC
modeled by Coulomb counting and the voltagemodeled by an

equivalent electric circuit. Thus a recursive SoC estimation

can be provided by an extendedKalman filter. The key advan-

tage of a Kalman filter is that it is a closed loop method which

can take the sensor error into account. However on a real-life

electric vehicle, the state-space model describing the battery

behavior should change over time. Indeed, these changes are

random since they depend not only on uncontrolled external

conditions, like ambient temperature and current profile, but

also on internal conditions like internal resistance and battery

aging. Improvements of the Kalman filter method to include

the possibility of changes over time have been approached

by identification of the parameters for several temperatures

and SoCs as in [2], or by including the set of parameters in
the state vector as in [3]. These solutions remain limited as

in the former the parameters changes according to an esti-

mated, thus may inaccurate, SoC and the latter requires high

computational capacity and thereby not suitable for an online

application. Changes can also be modeled through a regres-

sion function relating each parameter to a given temperature

as in [4]. This method omits the influence of the other uncon-

trolled internal and external conditions. Up to our best knowl-

edge, there is no model or method that gives a reliable online

SoC estimation regardless of internal and external conditions.

This paper introduces a newmodel for theSoC estimation

using a Switching Markov State-Space Model (SMSSM): the

battery behavior is described by a set of potential linear state-

space models, switching randomly according to a Markov

chain. The model includes two latent variables: a continuous

one, the SoC and a discrete one, the finite Markov state. Two

issues arise with this modeling. The first one relates to the

inference of unknown parameters. For this purpose, a Monte

Carlo approximation of the EM algorithm is used. The sec-

ond one relates to the choice of the number of hiddenMarkov

states. Being a result of a compromise between accuracy re-

quirements andmodel complexity, the optimal number of hid-

den Markov states is assessed using different model selection



criteria. Numerical experiments were made with electric ve-

hicle real data for different drives and ambient temperatures,

and show the potential benefits and the practical usefulness of

the proposed model.

The paper is organized as follows. The SoC model is de-

scribed in Section 2. The parameters estimation is described

in Section 3 and discussed in Section 4 using real-life electric

vehicle data. Section 5 concludes the paper.

2. STATE OF CHARGEMODEL

The battery behavior is observed on [0 ; T ], at sampling time
points t with a step ∆t: the current is considered as an input,
the voltage is measured, and the SoC is unobserved.

2.1. Coulomb counting

The leading SoC estimator is the Coulomb counting:

SoCt = SoC0 +

∫ t

0

η · Is
Cref

ds, (1)

where η is the Faraday efficiency, Cref the reference capac-

ity and It the algebraic current measurement: positive for

a charge and negative for a discharge. This method suffers

from error accumulation over time that may introduce bias to

the estimated SoC. To improve it, the voltage of the battery
is generally considered. Indeed, an accurate voltage sensor

is not costly contrary to a current sensor. Thus the voltage

model depending on the SoC completes the Coulomb count-

ing in order to establish the so-called linear state-space model.

2.2. Linear State-Space Model

Let Xt denote the SoC at time t and Yt the voltage. In this

paper, we use the standard convention whereby capital letters

denote random variables, whereas lower letters are used for

their corresponding realizations. To describe the relation be-

tween the voltage and the SoC, an equivalent circuit of the
battery is used. This circuit implements a voltage source rep-

resenting the open circuit voltage of the battery, and an ohmic

resistance describing the internal resistance. The voltage Yt

is then given by the “observation equation”:

Yt = C ·Xt +D1 · ut +D2 + εt, (2)

whereC,D1 andD2 are constant with physical interpretation

and εt ∼ N (0, σ2
Y ) models the error of the voltage sensor.

The description of the model is completed by the “transition

equation” which is based on Coulomb counting:

Xt = Xt−1 +B ut + ωt, (3)

withB = η
Cref

, ut = It∆t and ωt ∼ N (0, σ2
X)modeling the

random fluctuations of the SoC. The Gaussian white noises
wt and εt are assumed to be independent. In practice at time
t = 0, the battery is often in a resting state, thus SoC0 can be
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Fig. 1. Prediction of the voltage using a LSSM

efficiently calculated through the open circuit voltage mea-

surement [5]. Thus, the Linear State-Space Model (LSSM)

relates the unobservedXt and the observed Yt through linear

equations (2) and (3). The Kalman filter provides an optimal

estimation of xt, in a mean square error sense, given an ob-

servation y1:t = {y1, . . . , yt} and an input u1:t sequences [6].

In practice the battery dynamics change during charge/

discharge according to uncontrolled internal and external con-

ditions. Consequently, each set of usage conditions should be

described by specific equations of observation and transition.

Let us consider a simple case for which the current and the

temperature are constant. In order to monitor the relevance

of the Kalman filter, attention has been given to the compar-

ison between the observed and estimated voltage. Figure 1

shows that a single LSSM cannot estimate accurately the volt-

age throughout the whole interval [0 ; T ]. Therefore, we sup-
pose that {Xt, Yt} is described by different potential LSSMs,

and that the changes are random according to an unobserved

Markov chain. Hence, the SoC is modeled by the so-called

Switching Markov State-Space Model (SMSSM) [7].

2.3. Switching Markov State-Space Model

Let us denote St the indicator of the random switch of LSSM.

St is a Markov chain on {1, . . . , κ}, Π(i) = p(S0 = i) is
its initial distribution and A(i, j) = p(St+1 = j | St = i)
its transition matrix. The switching times are unknown, thus

A and κ need to be estimated. The SoC is modeled by the

following SMSSM:

Xt = Xt−1 +B(St) · ut + ωt (4)

Yt = C(St) ·Xt +D1(St) · ut +D2(St) + εt, (5)

where ωt ∼ N (0 ; σ2
X(St)) and εt ∼ N (0 ; σ2

Y (St)). The
observations y1:T are assumed conditionally independent

given (xt, st); while {Xt, St} is a Markov chain, verifying

pθ(st, xt | st−1, xt−1) = pθ(st | st−1)pθ(xt | xt−1, st),
(6)

where θ is the vector of parameters:

θ = {B(s), C(s), D1(s), D2(s), σX(s), σY (s), A}1≤s≤κ .

The distributions pθ (xt | xt−1, st) and pθ (yt | xt, st) are as-
sumed to be Gaussian, whose parameters are deduced from



(4) and (5). In the case of a specific Markov state sequence

s0:T , the Kalman filter provides an optimal estimation of

x0:T , given observation y1:T and input u1:T sequences; oth-

erwise s0:T should be estimated. This point is discussed

in § 4.3. In the next section, the problem of estimating the

unknown parameters θ for a fixed κ is treated.

3. BATCH LEARNING OF PARAMETERS

Let us consider a learning dataset {y1:T , u1:T} where y1:T is

observed and u1:T is an input. Here both x0:T and s0:T are

unknown. In the following, a batch learning of unknown pa-

rameter θ using the Maximum Likelihood (ML) inference is

proposed. The original ML estimation problem can be formu-

lated as follows

θ̂ = argmax
θ

pθ(y1:T ). (7)

For SMSSM, the marginal likelihood pθ(y1:T ) is given by:

pθ(y1:T ) =
∑

s0:T

∫

x0:T

pθ(x0:T , s0:T , y1:T )dx0:T , (8)

where pθ(x0:T , s0:T , y1:T ) is the complete-likelihood. It is

clear that a direct evaluation of (8) is analytically difficult.

Therefore, θ is estimated with the EM algorithm which is the

most widely used method for ML estimates of unknown pa-

rameters in models involving latent variables [8].

3.1. EM algorithm

The EM algorithm consists of iteratively estimating the set

of parameters θ using the conditional expectation of the

complete-likelihood:

Q(θ, θ′) = EY1:T ,θ′ [log pθ (X0:T , S0:T , Y1:T )] . (9)

Given an initial value θ′, the ML estimator is iteratively ap-

proached by θ which maximizesQ(θ, θ′).

3.1.1. Expectation Step

Based on the interaction (6) between Xt and St, the condi-

tional expectationQ(θ, θ′) can be written as follows

Q(θ, θ′) =
∑

s0:T

{pθ′(s0:T | y1:T ) (10)

ES0:T ,Y1:T ,θ′ [log pθ(X0:T , S0:T , Y1:T )]}.

Given s0:T , the conditional expectation in (10) can be evalu-
ated using a Kalman filter.

3.1.2. Maximization Step

Our aim is to maximize Q(θ, θ′) w.r.t. θ, under the trivial
constraint on the transition matrix

∑

j A(i, j) = 1. Then we
derive the Lagrangian:

L(θ, λ) = Q(θ, θ′) +
κ
∑

i=1

λi[1−
∑

j

A(i, j)], (11)

where λi are the Lagrangian coefficients. Solving the deriva-

tive equations of L(θ, θ′) w.r.t. θ leads to a system of 6 · κ
equations which require the calculation of x̃t|T = E[xt |
s0:T , y1:T , θ] and x̃t,r|T = E[xt ·xr | s0:T , y1:T , θ] for all pos-
sible s0:T ∈ {1, . . . , κ}

T+1. However, an exact computation

of these conditional expectations needs to perform summa-

tions over up to κT+1 values of s0:T . Even for modest values
of T , this requires a prohibitive computational cost.

3.2. Monte Carlo approximation of the EM algorithm for

SMSSM

To overcome this problem, we resort to the particle filters

method to numerically approximate the EM algorithm [9].

More precisely, we use a set of N “particles” {si0:T }
N
i=1 and

importance weights {wi
T }

N
i=1, such that ∂Q(θ, θ

′)/∂θ can be
estimated by

N
∑

i=1

wi
T

∂

∂θ
Esi

0:T
,Y1:T ,θ′ [log pθ(X0:T , s

i
0:T , Y1:T )]. (12)

TheN particle sequences can be sequentially simulated using

the importance sampling [10]: starting from samples si0:t−1,

new samples sit are simulated according to an importance

function qθ′(st | s0:t−1, y1:t). The associated importance

weights satisfy
∑

iw
i
t = 1, and can be calculated recursively

according to the following formula

wi
t ∝ wi

t−1

pθ′(yt | y1:t−1, s1:t)pθ′(st | s1:t−1)

qθ′(st | y1:t, s1:t−1)
. (13)

Here, we choose qθ′(st | y1:t, s1:t−1) = pθ′(st | y1:t, s1:t−1)
which minimizes the variance of the importance weights [10].

In practice after a few simulation iterations, a lot of impor-

tance weights could be very close to zero. To avoid this “de-

generacy phenomenon”, a selection step is generally intro-

duced when the variance of the weights is higher than a pre-

defined threshold: it consists of discarding the particles si0:t
with low weights and duplicating the ones with high weights.

It has to be noted that more adapted smoothing algorithms

can be used to simulate the N particles [11]. Algorithm 1

presents an iteration of the proposed Monte Carlo (MC) EM

algorithm, with computational complexity equal to O(N T ).
The marginal likelihood pθ(y1:T ) is approximated by:

p̂θ(y1:T ) = p̂θ(y1)

T
∏

t=2

p̂θ(yt | y1:t−1), (14)

where p̂θ(yt | y1:t−1) =
N
∑

i=1

wi
t−1pθ(yt | s

i
0:t−1, y1:t−1).

The next section describes among other the identification

of the optimal number of Markov states as well as the online

estimation of (st, xt) given an estimated θ.

4. NUMERICAL EXPERIMENTS

To validate the new SoC model, as well as the proposed

method for parameters estimation, real-life Electric Vehicle



Algorithm 1 k-th iteration of the MC-EM algo.

Input← θ = θ(k), si0
i.i.d.
∼ Π

for t = 1 : T and i = 1 : N do

1. Sample sit
i.i.d.
∼ pθ(st | si0:t−1, y1:t), thus s

i
0:t =

(

si0:t−1, s
i
t

)

2. Given si0:t and y1:t, calculate x
i
t using a Kalman filter

3. Calculate importance weights wi
t

4. Selection step: sample si0:t
i.i.d.
∼

N
∑

i=1

wi
tδ(s0:t − si0:t),

where δ(·) is a Dirac function with mass at zero
end for

for t = 1 : T and i = 1 : N do

Calculate x̃i
t|T and x̃i

t,t|T using a Kalman filter

end for

Estimate θ(k+1) by solving ∂L(θ, λ)/∂θ = 0 using (12)

(EV) data is used. Accordingly, the battery usage does not

only depend on ambient temperature and itinerary, but also

on driver behavior and road conditions.

4.1. Description of the learning dataset

The learning dataset (Fig.2) comprises instantaneous current

and voltage measurements collected during a drive of an EV,

with an ambient temperature equal to 15◦C, a sampling time
of 2s and a working time of 4500s. The SoC was calculated

using the Coulomb counting method as the EV was equipped

with an accurate current sensor.

4.2. Choice of the number of hidden Markov states

The optimal number of hidden Markov states is identified by

the trade-off between accuracy requirements and model com-

plexity. Hence, seven SoC models have been tested (κ =
{1, . . . , 7}). For κ = 1, the SMSSM is a simple linear state-

space model. Thus two model selection criteria have been

considered [12, 13]:
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Fig. 2. Learning dataset collected during a drive of an EV
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Fig. 3. Model selection criteria: BIC(◦) and AIC (△)

BIC = −2 log (p̂θ(y1:T )) +K log(T ) (15)

AIC = −2 log (p̂θ(y1:T )) + 2K, (16)

whereK = κ (κ+ 5) is the number of unknown parameters.
As shown in Fig. 3, the model with κ = 4 is considered as the
“best” model according to BIC. However, AIC chooses κ = 5
but hesitates between κ = 4, 5 and 6. The results show that

BIC leads to an easier interpretation of the model [14].

4.3. Online estimation of the state of charge

We suppose here that the number of hiddenMarkov states has

been previously identified (see §4.2) and that the associated
vector of parameters θ is estimated (see §3.2). Given a new
observation yt and an input ut, the SoC is online estimated

using a particle filter; i.e., N particles sit are simulated from
pθ(st | si0:t−1, yt) (steps 1-4 of Algorithm 1), then N xi

t are

obtained using the Kalman filter. Finally, SoCt is estimated

by

ˆSoCt =

N
∑

i=1

wi
t · x

i
t, (17)

and confidence interval can be constructed.

4.4. Validation of the model

The learned SMSSM under 15◦C with κ = 4 is tested us-

ing three different datasets also collected during a drive of

an EV, under different ambient temperatures (5, 15, 25◦C).
The results show that SMSSM provides an accurate SoC es-

timation even with ambient temperatures different than that

of the learning dataset. Indeed, the maximum difference be-

tween the SoC estimated by Coulomb counting and SMSSM

is equal to 5%; whereas this difference reaches 20% for a sin-

gle linear state-space model, Fig. 4. Moreover, numerical

experiments show that under a specific hidden Markov state,

the relation between SoC, voltage and current is linear (Fig.5)
which confirms our starting hypothesis (§2.2). Figure 6 shows
that the hidden Markov state might reflect a specific usage of

the battery as it follows closely the variation of the voltage.

Thus, we expect that this hidden state would have a physical

interpretation and would model the physical changes of the

battery behavior.
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5. CONCLUSION

In this paper, we have proposed a new model for SoC esti-

mation. This model relates to Switching Markov State-Space

Models which are a linear state-space model with parameters

indexed by a Markov chain. The unknown parameters are

estimated using a MC approximation of the EM algorithm.

Validation on an EV real data confirmed the ability of the

proposed model to accurately estimate the SoC for differ-

ent drives and ambient temperatures. In addition, the results

show that the hidden Markov state might reflect a specific us-

age of the battery. Future work needs to focus on its phys-

ical interpretation based on the internal and external usage

conditions. Moreover, a comparison between our MC-EM al-

gorithm and a full Bayesian approach, specifically the Gibbs

sampling, still need to be explored.
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[7] S. Frühwirth-Schnatter, Finite Mixture and Markov

Switching Models, Springer, 2006.

[8] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maxi-

mum likelihood from incomplete data via the EM algo-

rithm,” Journal of the Royal Statistical Society. Series

B, vol. 39, pp. 1–38, 1977.

[9] Martin A. Tanner, Tools for Statistical Inference - Ob-

served Data and Data Augmentation Methods, vol. 67,

Springer-Verlag New York, 1991.

[10] A. Doucet and A. M. Johansen, “A tutorial on particle

filtering and smoothing: Fifteen years later,” Handbook

of Nonlinear Filtering, vol. 12, pp. 656–704, 2009.

[11] P. Fearnhead, D. Wyncoll, and J. Tawn, “A sequential

smoothing algorithm with linear computational cost,”

Biometrika, vol. 97, no. 2, pp. 447–464, 2010.

[12] H. Akaike, “A new look at the statistical model identifi-

cation,” IEEE Transactions on Automatic Control, vol.

19, no. 6, pp. 716–723, Dec 1974.

[13] G. Schwarz, “Estimating the Dimension of a Model,”

The Annals of Statistics, vol. 6, no. 2, pp. 461–464,Mar

1978.

[14] K.P. Burnham and D.R. Anderson, Model selection and

multimodel inference: a practical information-theoretic

approach, Springer, 2002.


