J. Ashburner, Computational anatomy with the spm software, Magnetic resonance imaging, vol.27, issue.8, pp.1163-1174, 2009.
DOI : 10.1016/j.mri.2009.01.006

C. Davatzikos, D. Shen, R. C. Gur, X. Wu, D. Liu et al., Wholebrain morphometric study of schizophrenia revealing a spatially complex set of focal abnormalities, Archives of general psychiatry, vol.62, issue.11, pp.1218-1227, 2005.

F. D. Martino, G. Valente, N. Staeren, J. Ashburner, R. Goebel et al., Combining multivariate voxel selection and support vector machines for mapping and classification of fmri spatial patterns, Neuroimage, vol.43, issue.1, pp.44-58, 2008.

A. De-pierrefeu, T. Fovet, F. Hadj-selem, T. Löfstedt, P. Ciuciu et al., Prediction of activation patterns preceding hallucinations in patients with schizophrenia using machine learning with structured sparsity, Human brain mapping, 2018.
URL : https://hal.archives-ouvertes.fr/cea-01883271

M. Dubois, F. Hadj-selem, T. Lofstedt, M. Perrot, C. Fischer et al., Predictive support recovery with tv-elastic net penalty and logistic regression: an application to structural mri, Pattern Recognition in Neuroimaging, pp.1-4, 2014.
DOI : 10.1109/prni.2014.6858517

URL : https://hal.archives-ouvertes.fr/cea-01016145

L. Grosenick, B. Klingenberg, K. Katovich, B. Knutson, and J. E. Taylor, Interpretable whole-brain prediction analysis with graphnet, NeuroImage, vol.72, pp.304-321, 2013.
DOI : 10.1016/j.neuroimage.2012.12.062

URL : https://doi.org/10.1016/j.neuroimage.2012.12.062

I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, Gene selection for cancer classification using support vector machines, Machine learning, vol.46, issue.1-3, pp.389-422, 2002.

Y. Kawasaki, M. Suzuki, F. Kherif, T. Takahashi, S. Zhou et al., Multivariate voxel-based morphometry successfully differentiates schizophrenia patients from healthy controls, Neuroimage, vol.34, issue.1, pp.235-242, 2007.

N. Koutsouleris, E. M. Meisenzahl, C. Davatzikos, R. Bottlender, T. Frodl et al., Use of neuroanatomical pattern classification to identify subjects in at-risk mental states of psychosis and predict disease transition, Archives of general psychiatry, vol.66, issue.7, pp.700-712, 2009.

M. Nieuwenhuis, N. E. Van-haren, H. E. Pol, W. Cahn, R. S. Kahn et al., Classification of schizophrenia patients and healthy controls from structural mri scans in two large independent samples, Neuroimage, vol.61, issue.3, pp.606-612, 2012.

M. Rozycki, T. D. Satterthwaite, N. Koutsouleris, G. Erus, J. Doshi et al.,

E. M. Gur and . Meisenzahl, Multisite machine learning analysis provides a robust structural imaging signature of schizophrenia detectable across diverse patient populations and within individuals, 2017.

T. G. Van-erp, D. P. Hibar, J. M. Rasmussen, D. C. Glahn, G. D. Pearlson et al., Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the enigma consortium, Molecular psychiatry, vol.21, issue.4, p.547, 2016.

H. Zou and T. Hastie, Regularization and variable selection via the elastic net, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.67, issue.2, pp.301-320, 2005.