M. R. Arbabshirani, S. Plis, J. Sui, and V. D. Calhoun, Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls, NeuroImage, 2016.

J. Ashburner and K. J. Friston, Unified segmentation, NeuroImage, vol.26, issue.3, pp.839-851, 2005.

F. Bach, R. Jenatton, J. Mairal, and G. Obozinski, Convex optimization with sparsity-inducing norms, Optimization for Machine Learning, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00937150

A. Beck and M. Teboulle, A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems, SIAM Journal on Imaging Sciences, vol.2, issue.1, pp.183-202, 2009.

A. Beck and M. Teboulle, Smoothing and first order methods: A unified framework, SIAM Journal on Optimization, vol.22, issue.2, pp.557-580, 2012.

J. M. Borwein and A. S. Lewis, Convex Analysis and Nonlinear Optimization: Theory and Examples, CMS Books in Mathematics, 2006.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, vol.3, pp.1-122, 2011.

A. Chambolle, . Ch, and . Dossal, On the convergence of the iterates of the "fast iterative shrinkage/thresholding algorithm, Journal of Optimization Theory and Applications, vol.166, issue.3, pp.968-982, 2015.

X. Chen, Q. Lin, S. Kim, J. G. Carbonell, and E. P. Xing, Smoothing proximal gradient method for general structured sparse regression, The Annals of Applied Statistics, vol.6, issue.2, pp.719-752, 2012.

R. Cuingnet, E. Gerardin, J. Tessieras, G. Auzias, S. Lehericy et al., Alzheimer's Disease Neuroimaging Initiative. Automatic classification of patients with alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database, NeuroImage, vol.56, issue.2, pp.766-781, 2011.

A. De-pierrefeu, T. Lfstedt, F. Hadj-selem, M. Dubois, R. Jardri et al., Structured Sparse Principal Components Analysis with the TV-Elastic Net Penalty, IEEE Transactions on Medical Imaging, issue.99, pp.1-1, 2017.
URL : https://hal.archives-ouvertes.fr/cea-01883278

E. Dohmatob and M. Eickenberg, Bertrand Thirion, and Gal Varoquaux. Speeding-up model-selection in GraphNet via early-stopping and univariate feature-screening, 2015.

E. Dohmatob and A. Gramfort, Bertrand Thirion, and Gal Varoquaux. Benchmarking solvers for TV-l1 least-squares and logistic regression in brain imaging, Pattern Recognition in Neuroimaging (PRNI), 2014.

M. Dubois, F. Hadj-selem, T. Lfstedt, M. Perrot, C. Fischer et al., Predictive support recovery with TV-Elastic Net penalty and logistic regression: An application to structural MRI, 2014 International Workshop on Pattern Recognition in Neuroimaging, pp.1-4, 2014.
URL : https://hal.archives-ouvertes.fr/cea-01016145

M. Friedman, A comparison of alternative tests of significance for the problem of m rankings, The Annals of Mathematical Statistics, vol.11, issue.1, pp.86-92, 1940.

G. B. Frisoni, N. C. Fox, C. R. Jack, P. Scheltens, and P. M. Thompson, The clinical use of structural MRI in alzheimer disease, Nature reviews. Neurology, vol.6, issue.2, pp.67-77, 2010.

A. Gramfort, B. Thirion, and G. Varoquaux, Identifying Predictive Regions from fMRI with TV-L1 Prior, 2013 International Workshop on Pattern Recognition in Neuroimaging (PRNI), pp.17-20, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00839984

L. Grosenick, B. Klingenberg, K. Katovich, B. Knutson, and J. E. Taylor, Interpretable whole-brain prediction analysis with GraphNet, NeuroImage, vol.72, pp.304-321, 2013.

J. Hanes, Multivariate Decoding and Brain Reading

, NeuroImage, vol.56, issue.2, pp.385-850, 2011.

J. Hardin, S. R. Garcia, and D. Golan, A method for generating realistic correlation matrices, Annals of Applied Statistics, vol.7, issue.3, pp.1733-1762, 2013.

T. Löfstedt, V. Guillemot, and V. Frouin, Edouard Duchesnay, and Fouad Hadj-Selem. Simulated data for linear regression with structured and sparse penalties: Introducing pylearn-simulate, Accepted in Journal of Statistical Software. Preprint

J. Mairal, Sparse coding for machine learning, image processing and computer vision, 2010.
URL : https://hal.archives-ouvertes.fr/tel-00595312

V. Michel, A. Gramfort, G. Varoquaux, E. Eger, and B. Thirion, Total Variation Regularization for fMRI-Based Prediction of Behavior, IEEE Transactions on Medical Imaging, vol.30, issue.7, pp.1328-1340, 2011.

Y. Nesterov, Excessive Gap Technique in Nonsmooth Convex Minimization, SIAM Journal on Optimization, vol.16, issue.1, pp.235-249, 2005.

Y. Nesterov, Smooth minimization of non-smooth functions, Mathematical Programming, vol.103, issue.1, pp.127-152, 2005.

M. Schmidt, N. L. Roux, and F. Bach, Convergence Rates of Inexact Proximal-Gradient Methods for Convex Optimization, NIPS'11-25 th Annual Conference on Neural Information Processing Systems, 2011.
URL : https://hal.archives-ouvertes.fr/inria-00618152

R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society (Series B), vol.58, pp.267-288, 1996.

G. Varoquaux, M. Eickenberg, E. Dohmatob, and B. Thirion, FAASTA: A fast solver for total-variation regularization of illconditioned problems with application to brain imaging, Colloque GRETSI, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01247388

B. Wahlberg, S. Boyd, M. Annergren, and Y. Wang, An ADMM Algorithm for a Class of Total Variation Regularized Estimation Problems, 2012.