T. Van-erp, D. P. Hibar, and J. M. Rasmussen, Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium, Mol Psychiatry, vol.21, pp.547-553, 2016.

D. Sun, T. Van-erp, and P. M. Thompson, Elucidating a magnetic resonance imaging-based neuroanatomic biomarker for psychosis: classification analysis using probabilistic brain atlas and machine learning algorithms, Biol Psychiatry, vol.66, pp.1055-1060, 2009.

G. Orr-u, W. Pettersson-yeo, A. F. Marquand, G. Sartori, and A. Mechelli, Using Support Vector Machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review, Neurosci Biobehav Rev, vol.36, pp.1140-1152, 2012.

J. Kambeitz, L. Kambeitz-ilankovic, and S. Leucht, Detecting neuroimaging biomarkers for schizophrenia: a meta-analysis of multivariate pattern recognition studies, Neuropsychopharmacology, vol.40, pp.1742-1751, 2015.

X. Lu, Y. Yang, and F. Wu, Discriminative analysis of schizophrenia using support vector machine and recursive feature elimination on structural MRI images, Medicine, vol.95, p.3973, 2016.

M. R. Sabuncu and E. Konukoglu, Alzheimer's Disease Neuroimaging Initiative. Clinical prediction from structural brain MRI scans: a large-scale empirical study, Neuroinformatics, vol.13, pp.31-46, 2015.

M. Rozycki, T. D. Satterthwaite, and N. Koutsouleris, Multisite machine learning analysis provides a robust structural imaging signature of schizophrenia detectable across diverse patient populations and within individuals, Schizophr Bull, vol.44, pp.1035-1044, 2017.

A. Vita, L. De-peri, C. Silenzi, and M. Dieci, Brain morphology in first-episode schizophrenia: a meta-analysis of quantitative magnetic resonance imaging studies, Schizophr Res, vol.82, pp.75-88, 2006.

F. Adriano, I. Spoletini, C. Caltagirone, and G. Spalletta, Updated meta-analyses reveal thalamus volume reduction in patients with first-episode and chronic schizophrenia, Schizophr Res, vol.123, pp.1-14, 2010.

A. M. Shepherd, K. R. Laurens, S. L. Matheson, V. J. Carr, and M. J. Green, Systematic meta-review and quality assessment of the structural brain alterations in schizophrenia, Neurosci Biobehav Rev, vol.36, pp.1342-1356, 2012.

P. Orban, C. Dansereau, and L. Desbois, Multisite generalizability of schizophrenia diagnosis classification based on functional brain connectivity, Schizophr Res, vol.192, pp.167-171, 2018.

M. Nieuwenhuis, N. Van-haren, H. Pol, H. E. Cahn, W. Kahn et al., Classification of schizophrenia patients and healthy controls from structural MRI scans in two large independent samples, NeuroImage, vol.61, pp.606-612, 2012.

M. Rozycki, T. D. Satterthwaite, and N. Koutsouleris, Multisite machine learning analysis provides a robust structural imaging signature of schizophrenia detectable across diverse patient populations and within individuals, Schizophr Bull, vol.44, pp.1035-1044, 2018.

Y. Kawasaki, M. Suzuki, and F. Kherif, Multivariate voxelbased morphometry successfully differentiates schizophrenia patients from healthy controls, NeuroImage, vol.34, pp.235-242, 2007.

J. Radua, S. Borgwardt, and A. Crescini, Multimodal metaanalysis of structural and functional brain changes in first episode psychosis and the effects of antipsychotic medication, Neurosci Biobehav Rev, vol.36, pp.2325-2333, 2012.

R. Salvador, J. Radua, and . Canales-rodr-iguez-ej, Evaluation of machine learning algorithms and structural features for optimal MRI-based diagnostic prediction in psychosis, PLoS ONE, vol.12, p.175683, 2017.

J. Ashburner, Computational anatomy with the SPM software, Magn Reson Imaging, vol.27, pp.1163-1174, 2009.

J. Ashburner and K. J. Friston, Unified segmentation, NeuroImage, vol.26, pp.839-851, 2005.

F. Pedregosa, G. Varoquaux, and A. Gramfort, Scikit-learn: machine Learning in Python, J Mach Learn Res, vol.12, pp.2825-2830, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

Z. Wang, A. R. Childress, J. Wang, and J. A. Detre, Support vector machine learning-based fMRI data group analysis, NeuroImage, vol.36, pp.1139-1151, 2007.

B. Gaonkar and C. Davatzikos, Analytic estimation of statistical significance maps for support vector machine based multi-variate image analysis and classification, NeuroImage, vol.78, pp.270-283, 2013.

H. Zou and T. Hastie, Regularization and variable selection via the elastic net, J Royal Stat Soc, vol.67, pp.301-320, 2005.

L. Grosenick, B. Klingenberg, K. Katovich, B. Knutson, and J. E. Taylor, Interpretable whole-brain prediction analysis with GraphNet, NeuroImage, vol.72, pp.304-321, 2013.

F. Hadj-selem, T. L?-ofstedt, and E. Dohmatob, Continuation of Nesterov's smoothing for regression with structured sparsity in high-dimensional neuroimaging, IEEE Trans Med Imaging, vol.2018, pp.1-1
URL : https://hal.archives-ouvertes.fr/cea-01883286

A. De-pierrefeu, T. Fovet, and F. Hadj-selem, Prediction of activation patterns preceding hallucinations in patients with schizophrenia using machine learning with structured sparsity, Hum Brain Mapp, vol.39, pp.1777-88, 2018.
URL : https://hal.archives-ouvertes.fr/cea-01883271

R. Roiz-santia~-nez, P. Suarez-pinilla, and B. Crespo-facorro, Brain structural effects of antipsychotic treatment in schizophrenia: a systematic review, Curr Neuropharmacol, vol.13, pp.422-434, 2015.

R. Smieskova, P. Fusar-poli, and A. P. , The effects of antipsychotics on the brain: what have we learnt from structural imaging of schizophrenia?-A systematic review, Curr Pharm Des, vol.15, pp.2535-2549, 2009.

U. S. Torres, E. Portela-oliveira, S. Borgwardt, and G. F. Busatto, Structural brain changes associated with antipsychotic treatment in schizophrenia as revealed by voxel-based morphometric MRI: an activation likelihood estimation meta-analysis, BMC Psychiatry, vol.13, p.342, 2013.

J. Fortin, E. M. Sweeney, J. Muschelli, C. M. Crainiceanu, and R. T. Shinohara, Alzheimer's Disease Neuroimaging Initiative. Removing inter-subject technical variability in magnetic resonance imaging studies, NeuroImage, vol.132, pp.198-212, 2016.

C. Hutton, B. Draganski, J. Ashburner, and N. Weiskopf, A comparison between voxel-based cortical thickness and voxelbased morphometry in normal aging, NeuroImage, vol.48, pp.371-380, 2009.
DOI : 10.1016/j.neuroimage.2009.06.043

URL : https://doi.org/10.1016/j.neuroimage.2009.06.043

R. Honea, T. J. Crow, D. Passingham, and C. E. Mackay, Regional deficits in brain volume in schizophrenia: a meta-analysis of voxel-based morphometry studies, Am J Psychiatry, vol.162, pp.2233-2245, 2005.

D. C. Glahn, A. R. Laird, and I. Ellison-wright, Meta-analysis of gray matter anomalies in schizophrenia: application of anatomic likelihood estimation and network analysis, Biol Psychiatry, vol.64, pp.774-781, 2008.

A. Fornito, M. , P. J. Wood, S. J. Pantelis, and C. , Mapping grey matter reductions in schizophrenia: an anatomical likelihood estimation analysis of voxelbased morphometry studies, Schizophr Res, vol.108, pp.104-113, 2009.

U. S. Torres, F. Duran, and M. S. Schaufelberger, Patterns of regional gray matter loss at different stages of schizophrenia: a multisite, cross-sectional VBM study in first-episode and chronic illness, Neuroimage Clin, vol.12, pp.1-15, 2016.

G. Kim, Y. Kim, and G. Jeong, Whole brain volume changes and its correlation with clinical symptom severity in patients with schizophrenia: a DARTEL-based VBM study, Schizophr Res, vol.12, pp.1-52, 2001.
DOI : 10.1371/journal.pone.0177251

URL : https://doi.org/10.1371/journal.pone.0177251

H. Pol, H. E. Schnack, H. G. Mandl, and R. C. , Focal gray matter density changes in schizophrenia, Arch Gen Psychiatry, vol.58, pp.1118-1125, 2001.

Y. Xiao, Z. Yan, and Y. Zhao, Support vector machinebased classification of first episode drug-na? ?ve schizophrenia patients and healthy controls using structural MRI, Schizophr Res, 2017.
DOI : 10.1016/j.schres.2017.11.037

W. Ren, S. Lui, and W. Deng, Anatomical and functional brain abnormalities in drug-naive first-episode schizophrenia, Am J Psychiatry, vol.170, pp.1308-1316, 2013.
DOI : 10.1176/appi.ajp.2013.12091148

M. , E. Hirvonen, N. Isohanni, M. Miettunen, and J. , Duration of untreated psychosis as predictor of long-term outcome in schizophrenia: systematic review and meta-analysis, Br J Psychiatry, vol.205, pp.88-94, 2014.