A. Abraham, E. Dohmatob, B. Thirion, D. Samaras, and G. Varoquaux, Extracting brain regions from rest fmri with total-variation constrained dictionary learning, Medical Image Computing and ComputerAssisted Intervention-MICCAI 2013-16th International Conference, pp.607-615, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00853242

B. B. Fischl, M. Sereno, and A. Dale, Cortical surface-based analysis: Ii: Inflation, flattening, and a surface-based coordinate system, NeuroImage, vol.9, issue.2, pp.195-207, 1999.

A. Bakkour, J. C. Morris, and B. C. Dickerson, The cortical signature of prodromal ad: regional thinning predicts mild ad dementia, Neurology, vol.72, pp.1048-1055, 2009.

A. Beck and M. Teboulle, A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems, SIAM Journal on Imaging Sciences, vol.2, issue.1, pp.183-202, 2009.

. Fig, 5: Correlation of components scores with ADAS test performance

A. Beck and M. Teboulle, Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems, IEEE Trans. Image Processing, vol.18, issue.11, pp.2419-2434, 2009.

A. Beck and M. Teboulle, Smoothing and first order methods: A unified framework, SIAM Journal on Optimization, vol.22, issue.2, pp.557-580, 2012.

L. Bentaleb, M. Beauregard, P. Liddle, and E. Stip, Cerebral activity associated with auditory verbal hallucinations: a functional magnetic resonance imaging case study, Journal of psychiatry & neuroscience: JPN, vol.27, issue.2, p.110, 2002.

J. M. Borwein and A. S. Lewis, Convex Analysis and Nonlinear Optimization: Theory and Examples, CMS Books in Mathematics, 2006.

S. Boyd and L. Vandenberghe, Convex Optimization, 2004.

H. Braak and E. Braak, Neuropathological stageing of alzheimer-related changes, Acta Neuropathologica, vol.82, issue.4, pp.239-259, 1991.

K. Brodmann, Vergleichende lokalisationslehre der grosshirnrinde in ihren prinzipien dargestellt auf grund des zellenbaues, 1909.

. Va-cardenas, C. Chao, . Studholme, . Yaffe, . Miller et al., Brain atrophy associated with baseline and longitudinal measures of cognition, Neurobiology of aging, vol.32, issue.4, pp.572-580, 2011.

A. Dale, B. Fischl, and M. I. Sereno, Cortical surfacebased analysis: I. segmentation and surface reconstruction, NeuroImage, vol.9, issue.2, pp.179-194, 1999.

A. Aspremont, L. E. Ghaoui, M. Jordan, and G. Lanckriet, A Direct Formulation for Sparse PCA Using Semidefinite Programming, SIAM Review, vol.49, issue.3, pp.434-448, 2007.

A. Delacourte, . David, . Sergeant, . Buee, . Wattez et al., The biochemical pathway of neurofibrillary degeneration in aging and alzheimers disease, Neurology, vol.52, issue.6, pp.1158-1158, 1999.

L. Dice, Measures of the amount of ecologic association between species, Ecology, vol.26, pp.297-302, 1945.

B. C. Dickerson, E. Feczko, J. C. Augustinack, J. Pacheco, J. C. Morris et al., Differential effects of aging and alzheimer's disease on medial temporal lobe cortical thickness and surface area, Neurobiology of aging, vol.30, pp.432-440, 2009.

E. Dohmatob, M. Eickenberg, B. Thirion, and G. Varoquaux, Speedingup model-selection in GraphNet via early-stopping and univariate feature-screening, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01147731

M. Dubois, F. Hadj-selem, T. Löfstedt, M. Perrot, C. Fischer et al., Predictive support recovery with TV-Elastic Net penalties and logistic regression: an application to structural MRI, Proceedings of the fourth International Workshop on Pattern Recognition in Neuroimaging, 2014.

H. Eavani, T. D. Satterthwaite, R. E. Filipovych, R. C. Gur, and C. Davatzikos, Identifying sparse connectivity patterns in the brain using resting-state fmri, Neuroimage, vol.105, pp.286-299, 2015.

D. Felleman and D. Van-essen, Distributed hierarchical processing in the primate cerebral cortex, Cerebral cortex, vol.1, issue.1, pp.1-47, 1991.

G. B. Frisoni, N. C. Fox, C. R. Jack, P. Scheltens, and P. M. Thompson, The clinical use of structural MRI in Alzheimer disease, Nat Rev Neurol, vol.6, issue.2, pp.67-77, 2010.

L. Grosenick, B. Klingenberg, K. Katovich, B. Knutson, and J. Taylor, Interpretable whole-brain prediction analysis with GraphNet, NeuroImage, vol.72, pp.304-321, 2013.

R. Guo, M. Ahn, and H. , Zhu, and the Alzheimers Disease Neuroimaging Initiative. Spatially weighted principal component analysis for imaging classification, Journal of Computational and Graphical Statistics, vol.24, pp.274-296, 2015.

F. Hadj-selem, T. Lofstedt, V. Frouin, V. Guillemot, and E. Duchesnay, An Iterative Smoothing Algorithm for Regression with Structured Sparsity, 2016.

C. R. Jack, . Shiung, . Gunter, . Obrien, . Sd-weigand et al., Comparison of different mri brain atrophy rate measures with clinical disease progression in ad, Neurology, vol.62, issue.4, pp.591-600, 2004.

R. Jardri, A. Pouchet, D. Pins, and P. Thomas, Cortical activations during auditory verbal hallucinations in schizophrenia: a coordinatebased meta-analysis, American Journal of Psychiatry, vol.168, issue.1, pp.73-81, 2011.

R. Jardri, P. Thomas, C. Delmaire, P. Delion, and D. Pins, The neurodynamic organization of modality-dependent hallucinations, Cerebral Cortex, pp.1108-1117, 2013.

R. Jenatton, G. Obozinski, and F. Bach, Structured sparse principal component analysis, International Conference on Artificial Intelligence and Statistics (AISTATS), 2010.
URL : https://hal.archives-ouvertes.fr/hal-00414158

I. Jolliffe, N. Trendafilov, and M. Uddin, A Modified Principal Component Technique Based on the LASSO, Journal of Computational and Graphical Statistics, vol.12, issue.3, pp.531-547, 2003.

M. Journe, Y. Nesterov, P. Richtrik, and R. Sepulchre, Generalized Power Method for Sparse Principal Component Analysis, J. Mach. Learn. Res, vol.11, pp.517-553, 2010.

B. Kandel, D. Wolk, J. Gee, and B. Avants, Predicting Cognitive Data from Medical Images Using Sparse Linear Regression, Information processing in medical imaging : proceedings of the ... conference, vol.23, pp.86-97, 2013.

M. Li, Y. Liu, F. Chen, and D. Hu, Including signal intensity increases the performance of blind source separation on brain imaging data, IEEE transactions on medical imaging, vol.34, issue.2, pp.551-563, 2015.

W. Lester and . Mackey, Deflation Methods for Sparse PCA, Advances in Neural Information Processing Systems 21, pp.1017-1024, 2009.

J. , Sparse coding for machine learning, image processing and computer vision, 2010.

J. Mairal, F. Bach, J. J. Ponce, and G. Sapiro, Online Learning for Matrix Factorization and Sparse Coding, J. Mach. Learn. Res, vol.11, pp.19-60, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00408716

C. R. Mcdonald, L. Mcevoy, L. Gharapetian, C. Fennema-notestine, D. J. Hagler et al., Alzheimers Disease Neuroimaging Initiative, et al. Regional rates of neocortical atrophy from normal aging to early alzheimer disease, Neurology, vol.73, issue.6, pp.457-465, 2009.

H. Mohr, U. Wolfensteller, S. Frimmel, and H. Ruge, Sparse regularization techniques provide novel insights into outcome integration processes, NeuroImage, vol.104, pp.163-176, 2015.

Y. Nesterov, Smooth minimization of non-smooth functions, Mathematical Programming, vol.103, issue.1, pp.127-152, 2005.

B. Ng, A. Vahdat, G. Hamarneh, and R. Abugharbieh, Generalized Sparse Classifiers for Decoding Cognitive States in fMRI, SpringerLink, pp.108-115, 2012.

R. Nieuwenhuys, The myeloarchitectonic studies on the human cerebral cortex of the vogt-vogt school, and their significance for the interpretation of functional neuroimaging data, Brain Structure and Function, vol.218, issue.2, pp.303-352, 2013.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion et al., Scikit-learn: Machine learning in Python, Journal of Machine Learning Research, vol.12, pp.2825-2830, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

M. Ramezani, K. Marble, H. Trang, P. Abolmaesumi, and I. S. Johnsrude, Joint sparse representation of brain activity patterns in multi-task fmri data, IEEE transactions on medical imaging, vol.34, issue.1, pp.2-12, 2015.

B. Ridha, V. Anderson, J. Barnes, R. Boyes, S. Price et al.,


, Volumetric mri and cognitive measures in alzheimer disease, Journal of neurology, vol.255, issue.4, pp.567-574, 2008.

H. Shen, H. Xu, L. Wang, Y. Lei, L. Yang et al., Making group inferences using sparse representation of resting-state functional mri data with application to sleep deprivation, Human Brain Mapping, vol.38, issue.9, pp.4671-4689, 2017.

J. Sled, A. Zijdenbos, and A. Evans, A nonparametric method for automatic correction of intensity nonuniformity in mri data, IEEE Trans Med Imaging, vol.17, pp.87-97, 1998.

P. Thompson, K. Hayashi, G. De-zubicaray, A. Janke, S. Rose et al., Mapping hippocampal and ventricular change in alzheimer disease, NeuroImage, vol.22, issue.4, pp.1754-1766, 2004.

W. Wang and H. Huang, Regularized Principal Component Analysis for Spatial Data, 2015.

D. M. Witten, R. Tibshirani, and T. Hastie, A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis, Biostatistics, vol.10, issue.3, pp.515-534, 2009.

X. Chen, L. Qihang, K. Seyoung, J. Carbonell, and E. Xing, Smoothing proximal gradient method for general structured sparse regression, The Annals of Applied Statistics, vol.6, issue.2, pp.719-752, 2012.

H. Zou, T. Hastie, and R. Tibshirani, Sparse Principal Component Analysis, Journal of Computational and Graphical Statistics, vol.15, issue.2, pp.265-286, 2006.