C. P. Morice, J. J. Kennedy, N. A. Rayner, and P. D. Jones, Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 data set, J. Geophys. Res, vol.117, p.8101, 2012.

. Ipcc-climate and T. F. Stocker, The Physical Science Basis, 2013.

P. U. Clark, Consequences of twenty-first-century policy for multi-millennial climate and sea-level change, Nat. Clim. Change, vol.6, pp.360-369, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01758964

M. Eby, Lifetime of anthropogenic climate change: millennial time scales of potential CO 2 and surface temperature perturbations, J. Clim, vol.22, pp.2501-2511, 2009.

, Subsidiary Body for Scientific and Technological Advice, 2015.

J. Rockström, A safe operating space for humanity, Nature, vol.461, p.472, 2009.

P. Valdes, Built for stability, Nat. Geosci, vol.4, pp.414-416, 2011.

P. C. Tzedakis, Interglacial diversity, Nat. Geosci, vol.2, pp.751-755, 2009.

M. A. Martinez-boti, Plio-Pleistocene climate sensitivity evaluated using high-resolution CO 2 records, Nature, vol.518, pp.49-54, 2015.

D. J. Lunt, A model-data comparison for a multi-model ensemble of early Eocene atmosphere-ocean simulations, EoMIP. Clim. Past, vol.8, pp.1717-1736, 2012.

. Paleosens-project-members, Making sense of palaeoclimate sensitivity, Nature, vol.491, pp.683-691, 2012.

M. J. Bentley, A community-based geological reconstruction of Antarctic Ice Sheet deglaciation since the Last Glacial Maximum, Quat. Sci. Rev, vol.100, pp.1-9, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02105574

O. N. Solomina, Holocene glacier fluctuations, Quat. Sci. Rev, vol.111, pp.9-34, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01483537

K. Lambeck, H. Rouby, A. Purcell, Y. Sun, and M. Sambridge, Sea level and global ice volumes from the Last Glacial Maximum to the Holocene, Proc. Natl Acad. Sci. USA, vol.111, pp.15296-15303, 2014.

J. P. Briner, Holocene climate change in Arctic Canada and Greenland, Quat. Sci. Rev, vol.147, pp.340-364, 2016.

A. Dutton, Sea-level rise due to polar ice-sheet mass loss during past warm periods, Science, vol.349, p.4019, 2015.

E. J. Colville, Sr-Nd-Pb isotope evidence for ice-sheet presence on Southern Greenland during the last interglacial, Science, vol.333, pp.620-623, 2011.

R. M. Deconto and D. Pollard, Contribution of Antarctica to past and future sea-level rise, Nature, vol.531, pp.591-597, 2016.

J. Sutter, P. Gierz, K. Grosfeld, M. Thoma, and G. Lohmann, Ocean temperature thresholds for Last Interglacial West Antarctic Ice Sheet collapse, Geophys. Res. Lett, vol.43, pp.2675-2682, 2016.

A. V. Reyes, South Greenland ice-sheet collapse during Marine Isotope Stage 11, Nature, vol.510, pp.525-528, 2014.

J. M. Schaefer, Greenland was nearly ice-free for extended periods during the Pleistocene, Nature, vol.540, pp.252-255, 2016.

B. De-boer, Simulating the Antarctic ice sheet in the late-Pliocene warm period: PLISMIP-ANT, an ice-sheet model intercomparison project, Cryosphere, vol.9, pp.881-903, 2015.

H. Dowsett, The PRISM4 (mid-Piacenzian) paleoenvironmental reconstruction, Clim. Past, vol.12, pp.1519-1538, 2016.

T. Naish, Obliquity-paced Pliocene West Antarctic ice sheet oscillations, Nature, vol.458, pp.322-328, 2009.

C. P. Cook, Dynamic behaviour of the East Antarctic ice sheet during Pliocene warmth, Nat. Geosci, vol.6, pp.765-769, 2013.

A. De-vernal, R. Gersonde, H. Goosse, M. Seidenkrantz, and E. W. Wolff, Sea ice in the paleoclimate system: the challenge of reconstructing sea ice from proxies -an introduction, Quat. Sci. Rev, vol.79, pp.1-8, 2013.

J. Knies, P. Cabedo-sanz, S. T. Belt, S. Baranwal, S. Fietz et al., The emergence of modern sea ice cover in the Arctic Ocean, Nat. Commun, vol.5, p.5608, 2014.

R. Stein, K. Fahl, P. Gierz, F. Niessen, and G. Lohmann, Arctic Ocean sea ice cover during the penultimate glacial and the last interglacial, Nat. Commun, vol.8, p.373, 2017.

A. Spolaor, Canadian Arctic sea ice reconstructed from bromine in the Greenland NEEM ice core, Sci. Rep, vol.6, p.33925, 2016.

M. D. Holloway, The spatial structure of the 128 ka Antarctic sea ice minimum, Geophys. Res. Lett, vol.44, pp.11129-11139, 2017.

C. Clotten, R. Stein, K. Fahl, and S. De-schepper, Seasonal sea ice cover during the warm Pliocene: evidence from the Iceland Sea (ODP Site 907), Earth Planet. Sci. Lett, vol.481, pp.61-72, 2018.

I. Hessler, Implication of methodological uncertainties for midHolocene sea surface temperature reconstructions, Clim. Past, vol.10, pp.2237-2252, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01472098

S. K. Praetorius, North Pacific deglacial hypoxic events linked to abrupt ocean warming, Nature, vol.527, pp.362-366, 2015.

B. Duncan, Interglacial/glacial changes in coccolith-rich deposition in the SW Pacific Ocean: an analogue for a warmer world?, Glob. Planet. Chang, vol.144, pp.252-262, 2016.

A. S. Studer, Antarctic zone nutrient conditions during the last two glacial cycles, Paleoceanography, vol.30, pp.845-862, 2015.

S. L. Jaccard, Two modes of change in Southern Ocean productivity over the past million years, Science, vol.339, pp.1419-1423, 2013.

D. M. Sigman, S. L. Jaccard, and G. H. Haug, Polar ocean stratification in a cold climate, Nature, vol.428, pp.59-63, 2004.

T. Cane, E. J. Rohling, A. E. Kemp, S. Cooke, and R. B. Pearce, High-resolution stratigraphic framework for Mediterranean sapropel S5: defining temporal relationships between records of Eemian climate variability, Palaeogeogr. Palaeoclimatol. Palaeoecol, vol.183, pp.87-101, 2002.

S. Kender, Mid Pleistocene foraminiferal mass extinction coupled with phytoplankton evolution, Nat. Commun, vol.7, p.11970, 2016.

A. M. Haywood, H. J. Dowsett, and A. M. Dolan, Integrating geological archives and climate models for the mid-Pliocene warm period, Nat. Commun, vol.7, p.10646, 2016.

M. Yasuhara, G. Hunt, D. Breitburg, A. Tsujimoto, and K. Katsuki, Human-induced marine ecological degradation: micropaleontological perspectives, Ecol. Evol, vol.2, pp.3242-3268, 2012.

D. Jolly, S. P. Harrison, B. Damnati, and R. Bonnefille, Simulated climate and biomes of Africa during the Late Quarternary: comparison with pollen and lake status data, Quat. Sci. Rev, vol.17, pp.629-657, 1998.

J. W. Williams, B. Shuman, and P. J. Bartlein, Rapid responses of the prairie-forest ecotone to early Holocene aridity in mid-continental, North America. Glob. Planet. Chang, vol.66, pp.195-207, 2009.

M. Reasoner and W. Tinner, Encyclopedia of Paleoclimatology and Ancient Environments, pp.442-446, 2008.

N. H. Bigelow, Climate change and Arctic ecosystems: 1. vegetation changes north of 55°N between the last glacial maximum, mid-Holocene, and present, J. Geophys. Res, vol.108, p.8170, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01757591

, Last Interglacial Arctic warmth confirms polar amplification of climate change, CAPE-Last Interglacial Project Members, vol.25, pp.1383-1400, 2006.

J. C. Larrasoaña, A. P. Roberts, and E. J. Rohling, Dynamics of Green Sahara periods and their role in hominin evolution, PLoS ONE, vol.8, p.76514, 2013.

A. De-vernal and C. Hillaire-marcel, Natural variability of Greenland climate, vegetation, and ice volume during the past million years, Science, vol.320, pp.1622-1625, 2008.

K. F. Helmens, Major cooling intersecting peak Eemian Interglacial warmth in northern Europe, Quat. Sci. Rev, vol.122, pp.293-299, 2015.

M. Melles, 2.8 million years of Arctic climate change from Lake El'gygytgyn, NE Russia, Science, vol.337, pp.315-320, 2012.

D. H. Urrego, M. F. Sánchez-goñi, A. L. Daniau, S. Lechevrel, and V. Hanquiez, Increased aridity in southwestern Africa during the warmest periods of the last interglacial, Clim. Past, vol.11, pp.1417-1431, 2015.

A. A. Andreev, Late Pliocene and Early Pleistocene vegetation history of northeastern Russian Arctic inferred from the Lake El'gygytgyn pollen record, Clim. Past, vol.10, pp.1017-1039, 2014.

D. Lemoine and C. P. Traeger, Economics of tipping the climate dominoes, Nat. Clim. Change, vol.6, pp.514-519, 2016.

A. Schilt, Isotopic constraints on marine and terrestrial N 2 O emissions during the last deglaciation, Nature, vol.516, pp.234-237, 2014.

S. A. Marcott, Centennial-scale changes in the global carbon cycle during the last deglaciation, Nature, vol.514, pp.616-619, 2014.

R. H. Rhodes, Enhanced tropical methane production in response to iceberg discharge in the North Atlantic, Science, vol.348, p.1016, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02011689

D. C. Frank, Ensemble reconstruction constraints on the global carbon cycle sensitivity to climate, Nature, vol.463, pp.527-530, 2010.

T. K. Bauska, Links between atmospheric carbon dioxide, the land carbon reservoir and climate over the past millennium, Nat. Geosci, vol.8, pp.383-387, 2015.

D. J. Charman, Climate-related changes in peatland carbon accumulation during the last millennium, Biogeosciences, vol.10, pp.929-944, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00980653

S. Frolking and N. T. Roulet, Holocene radiative forcing impact of northern peatland carbon accumulation and methane emissions, Glob. Change Biol, vol.13, pp.1079-1088, 2007.

B. D. Stocker, Z. Yu, C. Massa, and F. Joos, Holocene peatland and ice-core data constraints on the timing and magnitude of CO 2 emissions from past land use, Proc. Natl Acad. Sci. USA, vol.114, pp.1492-1497, 2017.

Z. Yu, J. Loisel, D. P. Brosseau, D. W. Beilman, and S. J. Hunt, Global peatland dynamics since the Last Glacial Maximum, Geophys. Res. Lett, vol.37, 2010.

A. S. Dalton, S. A. Finkelstein, P. J. Barnett, and S. L. Forman, Constraining the Late Pleistocene history of the Laurentide Ice Sheet by dating the Missinaibi Formation, Canada. Quat. Sci. Rev, vol.146, pp.288-299, 2016.

M. Sierralta, B. Urban, G. Linke, and M. Frechen, Middle Pleistocene interglacial peat deposits from Northern Germany investigated by 230Th/U and palynology: case studies from Wedel and Schöningen, Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, vol.168, pp.373-387, 2017.

W. T. Mitchell, Stratigraphic and paleoenvironmental reconstruction of a mid-Pliocene fossil site in the High Arctic, Arctic, vol.69, pp.185-204, 2016.

M. R. Turetsky, Global vulnerability of peatlands to fire and carbon loss, Nat. Geosci, vol.8, pp.11-14, 2015.

G. Hugelius, Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps, Biogeosciences, vol.11, pp.6573-6593, 2014.

M. Bock, Glacial/interglacial wetland, biomass burning and geologic methane emissions constrained by dual stable isotopic CH 4 ice core records, Proc. Natl Acad. Sci. USA, vol.114, pp.5778-5786, 2017.

B. Bereiter, Revision of the EPICA Dome C CO 2 record from 800 to 600 kyr before present, Geophys. Res. Lett, 2015.

L. Loulergue, Orbital and millennial-scale features of atmospheric CH 4 over the past 800,000 years, Nature, vol.453, pp.383-386, 2008.
URL : https://hal.archives-ouvertes.fr/insu-00379657

P. Köhler, G. Knorr, and E. Bard, Permafrost thawing as a possible source of abrupt carbon release at the onset of the Bølling/Allerød, Nat. Commun, vol.5, p.5520, 2014.

J. P. Kennett, K. G. Cannariato, I. L. Hendy, and R. J. Behl, Carbon isotopic evidence for methane hydrate instability during Quaternary interstadials, Science, vol.288, pp.128-133, 2000.

M. Bock, Hydrogen isotopes preclude clathrate CH 4 emissions at the onset of Dansgaard-Oeschger events, Science, vol.328, pp.1686-1689, 2010.

V. V. Petrenko, Minimal geological methane emissions during the Younger Dryas-Preboreal abrupt warming event, Nature, vol.548, pp.443-446, 2017.
URL : https://hal.archives-ouvertes.fr/cea-01901041

A. H. Macdougall and R. Knutti, Projecting the release of carbon from permafrost soils using a perturbed parameter ensemble modelling approach, Biogeosciences, vol.13, pp.2123-2136, 2016.

J. M. Gregory and P. Huybrechts, Ice-sheet contributions to future sea-level change, Philos. Trans. R. Soc. Lond. A, vol.354, pp.1709-1731, 2006.

A. Robinson, R. Calov, and A. Ganopolski, Multistability and critical thresholds of the Greenland ice sheet, Nat. Clim. Change, vol.2, pp.429-432, 2012.

R. G. Hatfield, Interglacial responses of the southern Greenland ice sheet over the last 430,000 years determined using particle-size specific magnetic and isotopic tracers, Earth Planet. Sci. Lett, vol.454, pp.225-236, 2016.

A. M. Yau, M. L. Bender, T. Blunier, and J. Jouzel, Setting a chronology for the basal ice at Dye-3 and GRIP: implications for the long-term stability of the Greenland Ice Sheet, Earth Planet. Sci. Lett, vol.451, pp.1-9, 2016.

P. R. Bierman, J. D. Shakun, L. B. Corbett, S. R. Zimmerman, and D. H. Rood, A persistent and dynamic East Greenland Ice Sheet over the past 7.5 million years, Nature, vol.540, pp.256-260, 2016.

R. P. Scherer, A. Aldahan, S. Tulaczyk, G. Possnert, H. Engelhardt et al., Pleistocene collapse of the West Antarctic ice sheet, Science, vol.281, pp.82-85, 1998.

D. K. Barnes and C. Hillenbrand, Faunal evidence for a late quaternary trans-Antarctic seaway, Glob. Change Biol, vol.16, pp.3297-3303, 2010.

T. Williams, Evidence for iceberg armadas from East Antarctica in the Southern Ocean during the late Miocene and early Pliocene, Earth Planet. Sci. Lett, vol.290, pp.351-361, 2010.

N. R. Golledge, R. H. Levy, R. M. Mckay, T. R. Naish, and . East, Antarctic ice sheet most vulnerable to Weddell Sea warming, Geophys. Res. Lett, vol.44, pp.2343-2351, 2017.

E. J. Steig, Influence of West Antarctic ice sheet collapse on Antarctic surface climate, Geophys. Res. Lett, vol.42, pp.4862-4868, 2015.

D. G. Vaughan, D. K. Barnes, P. T. Fretwell, and R. G. Bingham, Potential seaways across West Antarctica, Geochem. Geophys, vol.12, p.10004, 2011.

C. C. Hay, E. Morrow, R. E. Kopp, and J. X. Mitrovica, Probabilistic reanalysis of twentieth-century sea-level rise, Nature, vol.517, pp.481-484, 2015.

R. E. Kopp, F. J. Simons, J. X. Mitrovica, A. C. Maloof, and M. Oppenheimer, A probabilistic assessment of sea level variations within the last interglacial stage, Geophys. J. Int, vol.193, pp.711-716, 2013.

M. J. O'leary, Ice sheet collapse following a prolonged period of stable sea level during the last interglacial, Nat. Geosci, vol.6, pp.796-800, 2013.

E. J. Rohling, High rates of sea-level rise during the last interglacial period, Nat. Geosci, vol.1, pp.38-42, 2007.

R. S. Nerem, Climate-change-driven accelerated sea-level rise detected in the altimeter era, Proc. Natl Acad. Sci. USA, vol.115, pp.2022-2025, 2018.

W. Tinner, A 700-year paleoecological record of boreal ecosystem responses to climatic variation from Alaska, Ecology, vol.89, pp.729-743, 2008.

C. Schwörer, P. D. Henne, and W. Tinner, A model-data comparison of Holocene timberline changes in the Swiss Alps reveals past and future drivers of mountain forest dynamics, Glob. Change Biol, vol.20, pp.1512-1526, 2014.

J. Verbesselt, Remotely sensed resilience of tropical forests, Nat. Clim. Change, vol.6, pp.1028-1031, 2016.

G. M. Macdonald, K. V. Kremenetski, and D. W. Beilman, Climate change and the northern Russian treeline zone, Philos. Trans. R. Soc. Lond. B Biol. Sci, vol.363, pp.2285-2299, 2008.

M. Scheffer, M. Hirota, M. Holmgren, E. H. Van-nes, and F. S. Chapin, Thresholds for boreal biome transitions, Proc. Natl Acad. Sci. USA, vol.109, pp.21384-21389, 2012.

M. Ruosch, R. Spahni, F. Joos, P. D. Henne, W. O. Van-der-knaap et al., Past and future evolution of Abies alba forests in Europecomparison of a dynamic vegetation model with palaeo data and observations, Glob. Change Biol, vol.22, pp.727-740, 2016.

D. Colombaroli, Response of broadleaved evergreen Mediterranean forest vegetation to fire disturbance during the Holocene: insights from the peri-Adriatic region, J. Biogeogr, vol.36, pp.314-326, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00476764

M. Hirota, M. Holmgren, E. H. Van-nes, and M. Scheffer, Global resilience of tropical forest and savanna to critical transitions, Science, vol.334, pp.232-235, 2011.

S. Kröpelin, Climate-driven ecosystem succession in the Sahara: the past 6000 years, Science, vol.320, pp.765-768, 2008.

, The Paris Agreement, 2015.

G. Ceballos, P. R. Ehrlich, and R. Dirzo, Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines, Proc. Natl Acad. Sci. USA, vol.114, pp.6089-6096, 2017.

C. W. Snyder, Evolution of global temperature over the past two million years, Nature, vol.538, pp.226-228, 2016.

J. Hansen, M. Sato, G. Russell, and P. Kharecha, Climate sensitivity, sea level and atmospheric carbon dioxide, Philos. Trans. A Math. Phys. Eng. Sci, vol.371, p.20120294, 2013.

G. Bartoli, B. Hönisch, and R. E. Zeebe, Atmospheric CO 2 decline during the Pliocene intensification of Northern Hemisphere glaciations, Paleoceanography, vol.26, p.4213, 2011.

B. Hönisch, N. G. Hemming, D. Archer, M. Siddall, and J. Mcmanus, Atmospheric carbon dioxide concentration across the Mid-Pleistocene transition, Science, vol.324, pp.1551-1554, 2009.

S. A. Marcott, J. D. Shakun, P. U. Clark, and A. C. Mix, A reconstruction of regional and global temperature for the past 11,300 years, Science, vol.339, pp.1198-1201, 2013.

P. Consortium, A global multiproxy database for temperature reconstructions of the Common Era, Sci. Rep, vol.4, p.170088, 2017.

J. S. Hoffman, P. U. Clark, A. C. Parnell, and F. He, Regional and global sea-surface temperatures during the last interglaciation, Science, vol.355, pp.276-279, 2017.

B. L. Otto-bliesner, How warm was the last interglacial? New model-data comparisons, Philos. Trans. A Math Phys. Eng. Sci, vol.371, p.20130097, 2013.

D. C. Barber, Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes, Nature, vol.400, pp.344-348, 1999.

A. Schilt, Atmospheric nitrous oxide during the last 140,000 years, Earth Planet. Sci. Lett, vol.300, pp.33-43, 2010.
URL : https://hal.archives-ouvertes.fr/insu-00653759

A. Berger and M. F. Loutre, Insolation values for the climate of the last 10 million years, Quat. Sci. Rev, vol.10, pp.297-317, 1991.

J. Marsicek, B. N. Shuman, P. J. Bartlein, S. L. Shafer, and S. Brewer, Reconciling divergent trends and millennial variations in Holocene temperatures, Nature, vol.554, pp.92-96, 2018.

T. Kobashi, Volcanic influence on centennial to millennial Holocene Greenland temperature change, Sci. Rep, vol.7, p.1441, 2017.

B. Vinther, Holocene thinning of the Greenland ice sheet, Nature, vol.461, pp.385-388, 2009.

C. Buizert, Greenland-wide seasonal temperatures during the last deglaciation, Geophys. Res. Lett, vol.45, pp.1905-1914, 2018.

T. Eldevik, A brief history of climate -the northern seas from the Last Glacial Maximum to global warming, Quat. Sci. Rev, vol.106, pp.225-246, 2014.

L. Max, Sea surface temperature variability and sea-ice extent in the subarctic northwest Pacific during the past 15,000 years, Paleoceanography, vol.27, p.3213, 2012.

J. A. Barron, L. Heusser, T. Herbert, and M. Lyle, High-resolution climatic evolution of coastal northern California during the past 16,000 years, Paleoceanography, vol.18, p.1020, 2003.

P. U. Clark and P. Huybers, Interglacial and future sea level, Nature, vol.462, pp.856-857, 2009.

N. P. Mckay, J. T. Overpeck, and B. L. Otto-bliesner, The role of ocean thermal expansion in Last Interglacial sea level rise, Geophys. Res. Lett, vol.38, p.14605, 2011.

, CLIMAP Project Members. The last interglacial ocean. Quat. Res, vol.21, pp.123-224, 1984.

C. S. Turney and R. T. Jones, Does the Agulhas Current amplify global temperatures during super-interglacials?, J. Quat. Sci, vol.25, pp.839-843, 2010.

E. Capron, A. Govin, R. Feng, B. L. Otto-bliesner, and E. W. Wolff, Critical evaluation of climate syntheses to benchmark CMIP6/PMIP4 127 ka last interglacial simulations in the high-latitude regions, Quat. Sci. Rev, vol.168, pp.137-150, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01584123

A. Landais, How warm was Greenland during the last interglacial period?, Clim. Past, vol.12, pp.1933-1948, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01587491

H. J. Dowsett, Assessing confidence in Pliocene sea surface temperatures to evaluate predictive models, Nat. Clim. Change, vol.2, pp.365-371, 2012.

J. Brigham-grette, Pliocene warmth, polar amplification, and stepped pleistocene cooling recorded in NE Arctic Russia, Science, vol.340, pp.1421-1427, 2013.

A. P. Ballantyne, D. R. Greenwood, J. S. Sinninghe-damsté, A. Z. Csank, J. J. Eberle et al., Significantly warmer Arctic surface temperatures during the Pliocene indicated by multiple independent proxies, Geology, vol.38, pp.603-606, 2010.

U. Salzmann, Challenges in quantifying Pliocene terrestrial warming revealed by data-model discord, Nat. Clim. Change, vol.3, pp.969-974, 2013.

D. W. Lea, The 100 000-yr cycle in tropical SST, greenhouse forcing, and climate sensitivity, J. Clim, vol.17, pp.2170-2179, 2004.

K. A. Dyez and A. C. Ravelo, Late Pleistocene tropical Pacific temperature sensitivity to radiative greenhouse gas forcing, Geology, vol.41, pp.23-26, 2013.

D. J. Lunt, A. M. Haywood, G. A. Schmidt, U. Salzmann, P. J. Valdes et al., Earth system sensitivity inferred from Pliocene modelling and data, Nat. Geosci, vol.3, pp.60-64, 2010.

A. S. Von-der-heydt, Lessons on climate sensitivity from past climate changes, Curr. Clim. Change Rep, vol.2, pp.148-158, 2016.

K. J. Meissner, The Paleocene-Eocene Thermal Maximum: how much carbon is enough?, Paleoceanography, vol.29, pp.946-963, 2014.

E. Anagnostou, Changing atmospheric CO 2 concentration was the primary driver of early Cenozoic climate, Nature, vol.533, pp.380-384, 2016.

A. Goldner, M. Huber, and R. Caballero, Does Antarctic glaciation cool the world?, Clim. Past, vol.9, pp.173-189, 2013.

J. T. Kiehl and C. A. Shields, Sensitivity of the Palaeocene-Eocene Thermal Maximum climate to cloud properties, Phil. Trans. R. Soc. A, vol.371, p.20130093, 2013.

N. Sagoo, P. Valdes, R. Flecker, and L. J. Gregoire, The Early Eocene equable climate problem: can perturbations of climate model parameters identify possible solutions? Phil, Trans. R. Soc. A, vol.371, p.20130123, 2013.

, International Foundation High Altitude Research Stations Jungfraujoch and Gornergrat

, 27 GNS Science

, Past Global Changes (PAGES)

, Faculty of Geographical and Geological Sciences

, Gif-sur-Yvette cédex, France. 38 Climate and Global Dynamics Laboratory, p.39

, Uni Research Climate, Bjerknes Centre for Climate Research, p.40

, 41 United States Global Change Research Program, National Coordination Office, p.42

, Chinese Academy of Sciences