Deriving hydrodynamic equations from dry active matter models in three dimensions

Abstract : We derive hydrodynamic equations from Vicsek-style dry active matter models in three dimensions (3D), building on our experience on the 2D case using the Boltzmann-Ginzburg-Landau approach. The hydrodynamic equations are obtained from a Boltzmann equation expressed in terms of an expansion in spherical harmonics. All their transport coefficients are given with explicit dependences on particle-level parameters. The linear stability analysis of their spatially-homogeneous solutions is presented. While the equations derived for the polar case (original Vicsek model with ferromagnetic alignment) and their solutions do not differ much from their 2D counterparts, the active nematics case exhibits remarkable differences: we find a true discontinuous transition to order with a bistability region, and cholesteric solutions whose stability we discuss.
Type de document :
Article dans une revue
Journal of Statistical Mechanics: Theory and Experiment, IOP Science, In press, 〈10.1088/1742-5468/aad6b5〉
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal-cea.archives-ouvertes.fr/cea-01882233
Contributeur : Dominique Girard <>
Soumis le : mercredi 26 septembre 2018 - 16:52:32
Dernière modification le : dimanche 7 octobre 2018 - 01:11:21

Fichier

1805.03182.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Benoît Mahault, Aurelio Patelli, Hugues Chaté. Deriving hydrodynamic equations from dry active matter models in three dimensions. Journal of Statistical Mechanics: Theory and Experiment, IOP Science, In press, 〈10.1088/1742-5468/aad6b5〉. 〈cea-01882233〉

Partager

Métriques

Consultations de la notice

29

Téléchargements de fichiers

8