T. J. Kawecki, Experimental evolution, Trends Ecol. Evol, vol.27, pp.547-560, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00162893

J. E. Barrick and R. E. Lenski, Genome dynamics during experimental evolution, Nat. Rev. Genet, vol.14, pp.827-839, 2013.

B. P. Metzger, D. C. Yuan, J. D. Gruber, F. Duveau, and P. J. Wittkopp, Selection on noise constrains variation in a eukaryotic promoter, Nature, vol.521, pp.344-347, 2015.

R. Maddamsetti, Synonymous genetic variation in natural isolates of Escherichia coli does not predict where synonymous substitutions occur in a long-term experiment, Mol. Biol. Evol, vol.32, pp.2897-2904, 2015.

S. F. Bailey and T. Bataillon, Can the experimental evolution programme help us elucidate the genetic basis of adaptation in nature?, Mol. Ecol, vol.25, pp.203-218, 2016.

H. Ochman and N. A. Moran, Genes lost and genes found: evolution of bacterial pathogenesis and symbiosis, Science, vol.292, pp.1096-1099, 2001.

R. Ben-gurion and A. Shafferman, Essential virulence determinants of different Yersinia species are carried on a common plasmid, Plasmid, vol.5, pp.183-187, 1981.

M. L. Bernardini, J. Mounier, H. Hauteville, M. Coquis-rondon, and P. J. Sansonetti, Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial intra-and intercellular spread through interaction with F-actin, Proc. Natl. Acad. Sci. USA, vol.86, pp.3867-3871, 1989.

R. T. Okinaka, Sequence and organization of pXO1, the large Bacillus anthracis plasmid harboring the anthrax toxin genes, J. Bacteriol, vol.181, pp.6509-6515, 1999.

M. J. Lercher and C. Pal, Integration of horizontally transferred genes into regulatory interaction networks takes many million years, Mol. Biol. Evol, vol.25, pp.559-567, 2008.

P. Escobar-páramo, A specific genetic background is required for acquisition and expression of virulence factors in Escherichia coli, Mol. Biol. Evol, vol.21, pp.1085-1094, 2004.

C. Masson-boivin, E. Giraud, X. Perret, and J. Batut, Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes?, Trends Microbiol, vol.17, pp.458-466, 2009.

J. T. Sullivan, H. N. Patrick, W. L. Lowther, D. B. Scott, and C. W. Ronson, Nodulating strains of Rhizobium loti arise through chromosomal symbiotic gene transfer in the environment, Proc. Natl. Acad. Sci. USA, vol.92, pp.8985-8989, 1995.

L. Moulin, G. Béna, C. Boivin-masson, and T. St?pkowski, Phylogenetic analyses of symbiotic nodulation genes support vertical and lateral gene co-transfer within the Bradyrhizobium genus, Mol. Phylogenet. Evol, vol.30, pp.720-732, 2004.

K. G. Nandasena, G. W. O'hara, R. P. Tiwari, and J. G. Howieson, Rapid in situ evolution of nodulating strains for Biserrula pelecinus L. through lateral transfer of a symbiosis island from the original mesorhizobial inoculant, Appl. Environ. Microbiol, vol.72, pp.7365-7367, 2006.

C. Masson-boivin and J. L. Sachs, Symbiotic nitrogen fixation by rhizobia-the roots of a success story, Curr. Opin. Plant Biol, vol.44, pp.7-15, 2018.

P. Remigi, J. Zhu, J. P. Young, and C. Masson-boivin, Symbiosis within symbiosis: evolving nitrogen-fixing legume symbionts, Trends Microbiol, vol.24, pp.63-75, 2016.

M. Marchetti, Experimental evolution of a plant pathogen into a legume symbiont, PLoS Biol, vol.8, p.1000280, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00595766

C. Amadou, Genome sequence of the-rhizobium Cupriavidus taiwanensis and comparative genomics of rhizobia, Genome Res, vol.18, pp.1472-1483, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01655676

M. Marchetti, Experimental evolution of rhizobia may lead to either extra-or intracellular symbiotic adaptation depending on the selection regime, Mol. Ecol, vol.26, pp.1818-1831, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01607703

M. Marchetti, Shaping bacterial symbiosis with legumes by experimental evolution, Mol. Plant Microbe Interact, vol.27, pp.956-964, 2014.

D. Capela, Recruitment of a lineage-specific virulence regulatory pathway promotes intracellular infection by a plant pathogen experimentally evolved into a legume symbiont, Mol. Biol. Evol, vol.34, pp.2503-2521, 2017.

S. H. Guan, Experimental evolution of nodule intracellular infection in legume symbionts, Isme J, vol.7, pp.1367-1377, 2013.

P. Remigi, Transient hypermutagenesis accelerates the evolution of legume endosymbionts following horizontal gene transfer, PLoS Biol, vol.12, p.1001942, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01374959

O. Tenaillon, The molecular diversity of adaptive convergence, Science, vol.335, pp.457-461, 2012.

R. L. Marvig, L. M. Sommer, S. Molin, and H. K. Johansen, Convergent evolution and adaptation of Pseudomonas aeruginosa within patients with cystic fibrosis, Nat. Genet, vol.47, pp.57-64, 2014.

A. Klonowska, Biodiversity of Mimosa pudica rhizobial symbionts (Cupriavidus taiwanensis, Rhizobium mesoamericanum) in New Caledonia and their adaptation to heavy metal-rich soils, FEMS Microbiol. Ecol, vol.81, pp.618-635, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01506267

W. Chen, Legume symbiotic nitrogen fixation by ?-proteobacteria is widespread in nature, J. Bacteriol, vol.185, pp.7266-7272, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01655696

C. P. Andam, S. J. Mondo, and M. A. Parker, Monophyly of nodA and nifH genes across Texan and Costa Rican populations of Cupriavidus nodule symbionts, Appl. Environ. Microbiol, vol.73, pp.4686-4690, 2007.

M. F. Simon, Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire, Proc. Natl. Acad. Sci. USA, vol.106, pp.20359-20364, 2009.

E. P. Rocha, Comparisons of dN/dS are time dependent for closely related bacterial genomes, J. Theor. Biol, vol.239, pp.226-235, 2006.

C. Kuo, N. A. Moran, and H. Ochman, The consequences of genetic drift for bacterial genome complexity, Genome Res, vol.19, pp.1450-1454, 2009.

S. Paterson, Antagonistic coevolution accelerates molecular evolution, Nature, vol.464, pp.275-278, 2010.

H. J. Beaumont, J. Gallie, C. Kost, G. C. Ferguson, and P. B. Rainey, Experimental evolution of bet hedging, Nature, vol.462, pp.90-93, 2009.

J. E. Barrick, Genome evolution and adaptation in a long-term experiment with Escherichia coli, Nature, vol.461, pp.1243-1247, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00435992

L. Perfeito, L. Fernandes, C. Mota, and I. Gordo, Adaptive mutations in bacteria: high rate and small effects, Science, vol.317, pp.813-815, 2007.

A. Guidot, Multihost experimental evolution of the pathogen Ralstonia solanacearum unveils genes involved in adaptation to plants, Mol. Biol. Evol, vol.31, pp.2913-2928, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01131067

S. Genin and T. P. Denny, Pathogenomics of the Ralstonia solanacearum species complex, Annu. Rev. Phytopathol, vol.50, pp.67-89, 2012.

M. M. Saad, M. Crevecoeur, C. Masson-boivin, and X. Perret, The type 3 protein secretion system of Cupriavidus taiwanensis strain LMG19424 compromises symbiosis with Leucaena leucocephala, Appl. Environ. Microbiol, vol.78, pp.7476-7479, 2012.

R. P. Garg, Evidence that Ralstonia eutropha (Alcaligenes eutrophus) contains a functional homologue of the Ralstonia solanacearum Phc cell density sensing system, Mol. Microbiol, vol.38, pp.359-367, 2000.

R. P. Mishra, Genetic diversity of Mimosa pudica rhizobial symbionts in soils of French Guiana: investigating the origin and diversity of Burkholderia phymatum and other beta-rhizobia, FEMS Microbiol. Ecol, vol.79, pp.487-503, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01791869

N. Doi, , vol.9, 2018.

C. Bontemps, Burkholderia species are ancient symbionts of legumes, Mol. Ecol, vol.19, pp.44-52, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01655679

N. Peeters, A. Guidot, F. Vailleau, and M. Valls, Ralstonia solanacearum, a widespread bacterial plant pathogen in the post-genomic era, Mol. Plant Pathol, vol.14, pp.651-662, 2013.

A. Perrier, Enhanced in planta fitness through adaptive mutations in EfpR, a dual regulator of virulence and metabolic functions in the plant pathogen Ralstonia solanacearum, PLoS Pathog, vol.12, p.1006044, 2016.

S. J. Clough, K. Lee, M. A. Schell, and T. P. Denny, A two-component system in Ralstonia (Pseudomonas) solanacearum modulates production of PhcA-regulated virulence factors in response to 3-hydroxypalmitic acid methyl ester, J. Bacteriol, vol.179, pp.3639-3648, 1997.

A. B. Dalia, E. Mcdonough, and A. Camilli, Multiplex genome editing by natural transformation, Proc. Natl. Acad. Sci. USA, vol.111, pp.8937-8942, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02191697

B. Daubech, Spatio-temporal control of mutualism in legumes helps spread symbiotic nitrogen fixation, vol.6, p.28683, 2017.

G. Fahraeus, The infection of clover root hairs by nodule bacteria studied by a simple glass slide technique, J. Gen. Microbiol, vol.16, pp.374-381, 1957.

H. L. Jensen, Nitrogen fixation in leguminous plants. I. General characters of root nodule bacteria isolated from species of Medicago and Trifolium in Australia, Proc. Int. Soc, vol.67, pp.98-108, 1942.

M. Rouillon and S. Cruveiller, AMALGAM: an automatic assembler tool for microbial genomes, 2018.

J. T. Simpson, ABySS: a parallel assembler for short read sequence data

, Genome Res, vol.19, pp.1117-1123, 2009.

Y. Peng, H. C. Leung, S. Yiu, and F. Y. Chin, IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth, Bioinformatics, vol.28, pp.1420-1428, 2012.

S. Koren, Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation, Genome Res, vol.27, pp.722-736, 2017.

M. Margulies, Genome sequencing in microfabricated high-density picolitre reactors, Nature, vol.437, pp.376-380, 2005.

R. Luo, SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler, Gigascience, vol.1, p.18, 2012.

D. Vallenet, MicroScope-an integrated microbial resource for the curation and comparative analysis of genomic and metabolic data, Nucleic Acids Res, vol.41, pp.636-647, 2013.

S. Bocs, AMIGene: annotation of microbial genes, Nucleic Acids Res, vol.31, pp.3723-3726, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00271511

D. Hyatt, Prodigal: prokaryotic gene recognition and translation initiation site identification, BMC Bioinforma, vol.11, p.119, 2010.

K. Lagesen, RNAmmer: consistent and rapid annotation of ribosomal RNA genes, Nucleic Acids Res, vol.35, pp.3100-3108, 2007.

T. M. Lowe and S. R. Eddy, tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence, Nucleic Acids Res, vol.25, pp.955-964, 1997.

J. Mariette, NG6: integrated next generation sequencing storage and processing environment, BMC Genom, vol.13, p.462, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00733481

E. P. Rocha, Inference and analysis of the relative stability of bacterial chromosomes, Mol. Biol. Evol, vol.23, pp.513-522, 2005.

V. Miele, S. Penel, and L. Duret, Ultra-fast sequence clustering from similarity networks with SiLiX, BMC Bioinforma, vol.12, p.116, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00698365

R. C. Edgar, MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res, vol.32, pp.1792-1797, 2004.

L. Nguyen, H. A. Schmidt, A. Von-haeseler, and B. Q. Minh, IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies, Mol. Biol. Evol, vol.32, pp.268-274, 2015.

B. Q. Minh, M. A. Nguyen, and A. Haeseler, Ultrafast approximation for phylogenetic bootstrap, Mol. Biol. Evol, vol.30, pp.1188-1195, 2013.

E. P. Nawrocki and S. R. Eddy, Infernal 1.1: 100-fold faster RNA homology searches, Bioinformatics, vol.29, pp.2933-2935, 2013.

E. P. Nawrocki, Rfam 12.0: updates to the RNA families database, Nucleic Acids Res, vol.43, pp.130-137, 2015.

H. Ochman and A. C. Wilson, Evolution in bacteria: evidence for a universal substitution rate in cellular genomes, J. Mol. Evol, vol.26, pp.74-86, 1987.

S. L. Sheetlin, Y. Park, M. C. Frith, and J. L. Spouge, Frameshift alignment: statistics and post-genomic applications, Bioinformatics, vol.30, pp.3575-3582, 2014.

M. Csuros, Count: evolutionary analysis of phylogenetic profiles with parsimony and likelihood, Bioinformatics, vol.26, pp.1910-1912, 2010.

B. Snel, P. Bork, and M. A. Huynen, Genome phylogeny based on gene content, Nat. Genet, vol.21, pp.108-110, 1999.

M. Richter and R. Rosselló-móra, Shifting the genomic gold standard for the prokaryotic species definition, Proc. Natl. Acad. Sci USA, vol.106, 2009.

T. C. Bruen, A simple and robust statistical test for detecting the presence of recombination, Genetics, vol.172, pp.2665-2681, 2005.

X. Didelot and D. J. Wilson, ClonalFrameML: efficient inference of recombination in whole bacterial genomes, PLoS Comput. Biol, vol.11, p.1004041, 2015.

B. Pfeifer, U. Wittelsburger, S. E. Ramos-onsins, and M. J. Lercher, PopGenome: an efficient Swiss army knife for population genomic analyses in R, Mol. Biol. Evol, vol.31, pp.1929-1936, 2014.

Z. Yang, R. Nielsen, N. Goldman, and A. Pedersen, Codon-substitution models for heterogeneous selection pressure at amino acid sites, Genetics, vol.155, pp.431-449, 2000.

M. Anisimova, R. Nielsen, and Z. Yang, Effect of recombination on the accuracy of the likelihood method for detecting positive selection at amino acid sites, Genetics, vol.164, pp.1229-1236, 2003.

R. L. Tatusov, E. V. Koonin, and D. J. Lipman, A genomic perspective on protein families, Science, vol.278, pp.631-637, 1997.

N. Y. Yu, PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes, Bioinformatics, vol.26, pp.1608-1615, 2010.

Q. Ren, K. Chen, and I. T. Paulsen, TransportDB: a comprehensive database resource for cytoplasmic membrane transport systems and outer membrane channels, Nucleic Acids Res, vol.35, pp.274-279, 2007.

M. Barakat, P. Ortet, and D. E. Whitworth, P2RP: a web-based framework for the identification and analysis of regulatory proteins in prokaryotic genomes, BMC Genom, vol.14, p.269, 2013.

S. S. Abby, Identification of protein secretion systems in bacterial genomes, Sci. Rep, vol.6, p.23080, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01374967

N. Peeters, Repertoire, unified nomenclature and evolution of the Type III effector gene set in the Ralstonia solanacearum species complex, BMC Genom, vol.14, p.1, 2013.

T. Yoshimochi, Y. Hikichi, A. Kiba, and K. Ohnishi, The global virulence regulator PhcA negatively controls the Ralstonia solanacearum hrp regulatory cascade by repressing expression of the PrhIR signaling proteins, J. Bacteriol, vol.191, pp.3424-3428, 2009.

J. Huang, W. Yindeeyoungyeon, R. P. Garg, T. P. Denny, and M. A. Schell, Joint transcriptional control of xpsR, the unusual signal integrator of the Ralstonia solanacearum virulence gene regulatory network, by a response regulator and a LysR-type transcriptional activator, J. Bacteriol, vol.180, pp.2736-2743, 1998.

S. M. Brumbley and T. P. Denny, Cloning of wild-type Pseudomonas solanacearum phcA, a gene that when mutated alters expression of multiple traits that contribute to virulence, J. Bacteriol, vol.172, pp.5677-5685, 1990.

J. Huang, B. F. Carney, T. P. Denny, A. K. Weissinger, and M. A. Schell, A complex network regulates expression of eps and other virulence genes of Pseudomonas solanacearum, J. Bacteriol, vol.177, pp.1259-1267, 1995.

J. Yao and C. Allen, Chemotaxis is required for virulence and competitive fitness of the bacterial wilt pathogen Ralstonia solanacearum, J. Bacteriol, vol.188, pp.3697-3708, 2006.

M. Poueymiro and S. Genin, Secreted proteins from Ralstonia solanacearum: a hundred tricks to kill a plant, Curr. Opin. Microbiol, vol.12, pp.44-52, 2009.

E. T. Gonzalez, D. G. Brown, J. K. Swanson, and C. Allen, Using the Ralstonia solanacearum Tat secretome to identify bacterial wilt virulence factors, Appl. Environ. Microbiol, vol.73, pp.3779-3786, 2007.

J. Cury, M. Touchon, and E. P. Rocha, Integrative and conjugative elements and their hosts: composition, distribution and organization, Nucleic Acids Res, vol.45, pp.8943-8956, 2017.

B. Taboada, R. Ciria, C. E. Martinez-guerrero, and E. Merino, ProOpDB: Prokaryotic Operon DataBase, Nucleic Acids Res, vol.40, pp.627-631, 2012.

Y. Benjamini and Y. Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, J. R. Stat. Soc. Ser. B, vol.57, pp.289-300, 1995.