C. Huntingford and L. Mercado, High chance that current atmospheric greenhouse concentrations commit to warmings greater than 1.5°C over land, Sci. Rep, vol.6, 2016.

J. Rogelj, D. L. Mccollum, B. C. O'neill, and K. Riahi, 2020 emissions levels required to limit warming to below 2°C, Nat. Clim. Change, vol.3, pp.405-412, 2013.

S. Fuss, Betting on negative emissions, Nat. Clim. Change, vol.4, pp.850-853, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02889704

A. Popp, Land-use futures in the shared socio-economic pathways, Glob. Environ. Change, vol.42, pp.331-345, 2017.

B. W. Griscom, Natural climate solutions, Proc. Natl Acad. Sci. USA, vol.114, pp.11645-11650, 2017.

A. Wiltshire and T. Davies-barnard, Planetary Limits to BECCS Negative Emissions, 2015.

P. Smith, Biophysical and economic limits to negative CO 2 emissions, Nat. Clim. Change, vol.6, pp.42-50, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01255739

K. Klein-goldewijk, A. Beusen, J. Doelman, and E. Stehfest, New anthropogenic land use estimates for the Holocene, Earth Syst. Sci. Data Discuss, vol.2016, pp.1-40, 2016.

F. Creutzig, Bioenergy and climate change mitigation: an assessment, GCB Bioenergy, vol.7, pp.916-944, 2014.

P. Smith, Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, vol.11, 2014.

C. Schleussner, Differential climate impacts for policy-relevant limits to global warming: the case of 1.5°C and 2°C, Earth Syst. Dyn, vol.7, pp.327-351, 2016.

J. Rogelj, Energy system transformations for limiting end-of-century warming to below 1.5°C. Nat, Clim. Change, vol.5, pp.519-551, 2015.

S. Sonntag, Quantifying and comparing effects of climate engineering methods on the Earth system, Earth's Future, vol.6, pp.149-168, 2018.

J. Rockström, A roadmap for rapid decarbonization, Science, vol.355, p.1269, 2017.

K. Riahi, The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview, Glob. Environ. Change-Human. Policy Dimens, vol.42, pp.153-168, 2017.

E. Wollenberg, Reducing emissions from agriculture to meet the 2°C target, Glob. Change Biol, vol.22, pp.3859-3864, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01605012

S. Frank, Reducing greenhouse gas emissions in agriculture without compromising food security?, Environ. Res. Lett, vol.12, p.105004, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02627339

L. R. Boysen, The limits to global-warming mitigation by terrestrial carbon removal, Earth's Future, vol.5, pp.463-474, 2017.

A. Krause, Large uncertainty in carbon uptake potential of landbased climate-change mitigation efforts, Glob Change Biol, vol.24, pp.3025-3038, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02081212

E. Stehfest, D. Van-vuuren, T. Kram, and L. Bouwman, Integrated Assessment of Global Environmental Change with IMAGE 3.0: Model Description and Policy Applications, 2014.

J. C. Doelman, Exploring SSP land-use dynamics using the IMAGE model: Regional and gridded scenarios of land-use change and land-based climate change mitigation, Glob. Environ. Change, vol.48, pp.119-135, 2018.

D. Van-vuuren, Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm, Glob. Environ. Change-Human. Policy Dimens, vol.42, pp.237-250, 2017.

A. B. Harper, Vegetation distribution and terrestrial carbon cycle in a carbon-cycle configuration of JULES4.6 with new plant functional types. Geosci. Model Dev, 2018.

W. Schakel, H. Meerman, A. Talaei, A. Ramírez, and A. Faaij, Comparative life cycle assessment of biomass co-firing plants with carbon capture and storage, Appl. Energy, vol.131, pp.441-467, 2014.

L. J. Smith and M. S. Torn, Ecological limits to terrestrial biological carbon dioxide removal, Clim. Change, vol.118, pp.89-103, 2013.

K. E. Taylor, R. J. Stouffer, and G. A. Meehl, An Overview of CMIP5 and the Experiment Design, Bull. Am. Meteor. Soc, vol.93, pp.485-498, 2012.

C. Huntingford, IMOGEN: an intermediate complexity model to evaluate terrestrial impacts of a changing climate, Geosci. Model Dev, vol.3, pp.679-687, 2010.

C. Huntingford, Flexible parameter-sparse global temperature timeprofiles that stabilise at 1.5°C and 2.0°C, Earth Syst. Dynam. Discuss, vol.2017, pp.1-11, 2017.

S. Chadburn, An improved representation of physical permafrost dynamics in the JULES land-surface model, Geosci. Model Dev, vol.8, pp.1493-1508, 2015.
URL : https://hal.archives-ouvertes.fr/insu-01205181

A. B. Harper, Improved representation of plant functional types and physiology in the Joint UK Land Environment Simulator (JULES v4.2) using plant trait information, Geosci. Model Dev, vol.9, pp.2415-2440, 2016.

Y. Pan, A large and persistent carbon sink in the world's forests, Science, vol.333, pp.988-993, 2011.

N. E. Vaughan, Evaluating the use of biomass energy with carbon capture and storage in low emission scenarios, Environ. Res. Lett, vol.13, p.44014, 2018.

A. Krause, Global consequences of afforestation and bioenergy cultivation on ecosystem service indicators, Biogeosciences, vol.14, pp.4829-4850, 2017.

V. Heck, D. Gerten, W. Lucht, and A. Popp, Biomass-based negative emissions difficult to reconcile with planetary boundaries, Nat. Clim. Change, vol.8, pp.151-155, 2018.

E. Comyn-platt, Carbon budgets for 1.5 and 2°C targets lowered by natural wetland and permafrost feedbacks, Nat. Geosci, 2018.

W. J. Collins, Increased importance of methane reduction for a 1.5°target, Environ. Res. Lett, vol.13, 2018.

R. M. Bright, Local temperature response to land cover and management change driven by non-radiative processes, Nat. Clim. Change, vol.7, p.296, 2017.

J. Pongratz, C. H. Reick, T. Raddatz, K. Caldeira, and M. Claussen, Past land use decisions have increased mitigation potential of reforestation, Geophys. Res. Lett, vol.38, 2011.

A. L. Hirsch, Biogeophysical impacts of land-use change on climate extremes in low-emission scenarios: results from HAPPI-Land, Earth's Future, vol.6, 2018.

R. Alkama and A. Cescatti, Biophysical climate impacts of recent changes in global forest cover, Science, vol.351, p.600, 2016.

C. Schleussner, Science and policy characteristics of the Paris agreement temperature goal, Nat. Clim. Change, vol.6, pp.827-835, 2016.

C. Gough and N. E. Vaughan, Synthesising Existing Knowledge on the Feasibility of BECCS.Report, vol.1, issue.2, 2015.

D. P. Van-vuuren, E. Stehfest, M. G. Den-elzen, J. Van-vliet, and M. Isaac, Exploring IMAGE model scenarios that keep greenhouse gas radiative forcing below 3 W/m 2 in 2100, Energy Econ, vol.32, pp.1105-1120, 2010.

J. Kemper, Biomass and carbon dioxide capture and storage: a review, Int. J. Greenh. Gas. Control, vol.40, pp.401-430, 2015.

M. Farjday and N. Macdowell, Can BECCS deliver sustainable and resource efficient negative emissions?, Energy Environ. Sci, vol.10, pp.1389-1426, 2017.

M. J. Best, The Joint UK Land Environment Simulator (JULES), model description-Part 1: Energy and water fluxes, Geosci. Model Dev, vol.4, pp.677-699, 2011.

D. Clark, The Joint UK Land Environment Simulator (JULES), model description-Part 2: Carbon fluxes and vegetation dynamics, Geosci. Model Dev, vol.4, pp.701-722, 2011.

P. M. Cox, Description of the TRIFFID Dynamic Global Vegetation Model, 2001.

A. Arneth, Historical carbon dioxide emissions caused by land-use changes are possibly larger than assumed, Nat. Geosci, vol.10, pp.79-84, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01681571

C. D. Jones, The HadGEM2-ES implementation of CMIP5 centennial simulations, Geosci. Model Dev, vol.4, pp.543-570, 2011.

A. D. Mcguire, Carbon balance of the terrestrial biosphere in the Twentieth Century: analyses of CO 2 , climate and land use effects with four process-based ecosystem models, Glob. Biogeochem. Cycles, vol.15, pp.183-206, 2001.

, The NCAR Command Language v.6.2.1 (The National Center for Atmospheric Research, 2014.

E. J. Burke, S. E. Chadburn, and A. Ekici, A vertical representation of soil carbon in the JULES land surface scheme (vn4. 3_permafrost) with a focus on permafrost regions, Geosci. Model Dev, vol.10, p.959, 2017.

A. Ruesch and H. K. Gibbs, Carbon Dioxide Information Analysis Center, 2008.

M. Zhao, F. A. Heinsch, R. R. Nemani, and S. W. Running, Improvements of the MODIS terrestrial gross and net primary production global data set, Remote Sens. Environ, vol.95, pp.164-176, 2005.

M. Zhao and S. W. Running, Drought-induced reduction in global terrestrial net primary production from, Science, vol.329, p.940, 2000.

N. H. Batjes, Harmonised soil property values for broadscale modelling (WISE30sec) with estimates of global soil carbon stocks, Geoderma, vol.269, pp.61-68, 2016.

J. L. Carvalho, T. W. Hudiburg, H. C. Franco, and E. H. Delucia, Contribution of above-and belowground bioenergy crop residues to soil carbon, GCB Bioenergy, vol.9, pp.1333-1343, 2017.

R. Barman, A. K. Jain, and M. Liang, Climate-driven uncertainties in modeling terrestrial gross primary production: a site level to global-scale analysis, Glob. Change Biol, vol.20, pp.1394-1411, 2014.

X. Yang, V. Wittig, A. K. Jain, and W. Post, Integration of nitrogen cycle dynamics into the Integrated Science Assessment Model for the study of terrestrial ecosystem responses to global change, Glob. Biogeochem. Cycles, vol.23, 2009.

A. K. Jain, P. Meiyappan, Y. Song, and J. I. House, CO 2 emissions from landuse change affected more by nitrogen cycle, than by the choice of land-cover data, Glob. Change Biol, vol.19, pp.2893-2906, 2013.

Y. Song, A. K. Jain, and G. F. Mcisaac, Implementation of dynamic crop growth processes into a land surface model: evaluation of energy, water and carbon fluxes under corn and soybean rotation, Biogeosciences, vol.10, pp.8039-8066, 2013.

C. H. Reick, T. Raddatz, V. Brovkin, and V. Gayler, Representation of natural and anthropogenic land cover change in MPI-ESM, J. Adv. Model. Earth Syst, vol.5, pp.459-482, 2013.

D. S. Goll, Strong dependence of CO 2 emissions from anthropogenic land cover change on initial land cover and soil carbon parametrization, Glob. Biogeochem. Cycles, vol.29, pp.1511-1523, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01805579

J. Pongratz, C. H. Reick, T. Raddatz, and M. Claussen, Effects of anthropogenic land cover change on the carbon cycle of the last millennium, Glob. Biogeochem. Cycles, vol.23, 2009.

B. Smith, Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model, Biogeosciences, vol.11, pp.2027-2054, 2014.

S. Sitch, Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model, Glob. Change Biol, vol.9, pp.161-185, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01757605

B. Poulter, D. C. Frank, E. L. Hodson, and N. E. Zimmermann, Impacts of land cover and climate data selection on understanding terrestrial carbon dynamics and the CO 2 airborne fraction, Biogeosciences, vol.8, pp.2027-2036, 2011.

M. Guimberteau, ORCHIDEE-MICT (v8.4.1), a land surface model for the high latitudes: model description and validation, Geosci. Model Dev, vol.11, pp.121-163, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01806766

K. Thonicke, The influence of vegetation, fire spread and fire behaviour on biomass burning and trace gas emissions: results from a process-based model, Biogeosciences, vol.7, 1991.

C. Yue, Modelling the role of fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation model ORCHIDEE-Part 1: simulating historical global burned area and fire regimes, Geosci. Model Dev, vol.7, pp.2747-2767, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02927266

C. Huntingford and P. M. Cox, An analogue model to derive additional climate change scenarios from existing GCM simulations, Clim. Dyn, vol.16, pp.575-586, 2000.

F. Joos, An efficient and accurate representation of complex oceanic and biospheric models of anthropogenic carbon uptake, Tellus B, vol.48, pp.397-417, 1996.

M. Meinshausen, S. Raper, and T. Wigley, Emulating coupled atmosphereocean and carbon cycle models with a simpler model, MAGICC6-Part 1: model description and calibration, Atmos. Chem. Phys, vol.11, pp.1417-1456, 2011.