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In this paper, we investigate the decay of incompressible homogeneous isotropic
turbulence in a variable viscosity fluid. The viscosity coefficient is assumed to depend
linearly on a scalar, representing either a temperature or a concentration, and obeying
a simple advection-diffusion equation. At high Reynolds numbers, Direct Numerical
Simulations (DNS) allow us to confirm the validity of Taylor’s postulate that the
dissipation is independent from the viscosity and its fluctuations. At low Reynolds
numbers, we report the presence of extra energy at small scales due to these variable
viscosity effects. This implies that the turbulent kinetic energy decreases less rapidly
as a function of time in variable viscosity fluids. In order to explain this phenomenon
and quantify its importance on the turbulent flow, we propose a statistical approach
based on an eddy-damped quasi-normal Markovian (EDQNM) spectral closure which
takes into account the nonlinearity introduced by variable viscosity. It is shown that
this latter additional term is of constant sign in the energy spectrum equation and
reduces the dissipation of the flow as observed. Also, by assuming the dominance
of distant interactions between wave numbers, we can propose a simple formula
expressing that variable viscosity effects lead to an effective reduction of the mean
viscosity proportional to the variance of viscosity fluctuations. © 2014 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4867893]

. INTRODUCTION

In many turbulent flows, the dependence of the viscosity coefficient on temperature or mix
composition can be large and may significantly impact the dynamics. For instance, considering
turbulent convection in the earth’s mantle, the viscosity decreases with temperature giving rise
to steep gradients. The transition to a turbulent convective regime is sensitive to this effect,! and
phenomena such as viscous sublayers or “stagnant lids”>~* may appear at a later stage. In contrast, for
plasmas in Kinetic regime, viscosity rapidly increases with temperature.’ This may alter the growth
rates of hydrodynamic instabilities like Rayleigh-Taylor® which determine the yield of inertial
confinement fusion (ICF) capsules.” Another case of importance is the mixing between two fluids of
different viscosities induced by the Kelvin-Helmholtz instability. Such situations occur in turbulent
jets, and the concentration-dependent viscosity may modify the entrainment mechanism during the
transition to turbulence.® A strong gradient of viscosity may also relaminarize mixing zones at late
stage in magma fountains.” Still, the precise role of variable viscosity is not completely understood
as it is entangled with the complex features of inhomogeneous and anisotropic turbulent flows.

Therefore, to identify the different mechanisms acting in turbulent flows with variable viscosity,
it seems desirable to focus on simpler configurations. In this work, we explore the interplay between
variable viscosity and incompressible unforced homogeneous isotropic turbulence. In our idealized
approach, the viscosity coefficient depends linearly on a scalar and is free to fluctuate around
a constant mean value. At high Reynolds number (R,), inhomogeneous configurations due to a
mean viscosity gradient have been investigated numerically by Lee ef al.'?. In this latter study, the
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influence of the variable viscosity terms on the dissipation was found negligible. This appears to
support the relevance of Taylor’s postulate,'! i.e., the independence of dissipation from the viscosity.
From a theoretical point of view, however, this conclusion should be examined more extensively
since variable viscosity effects produce additional terms in the equation for dissipation. This may
unbalance the equilibrium between vortex stretching production and enstrophy destruction,'> 3 both
terms growing as R 1t seems, but remains unexplained, that the fluctuations of velocity are able
to adapt themselves quick enough to steep viscosity gradients. As a consequence at high Reynolds
numbers, the variable viscosity term does not affect the decay of turbulence which is driven by the
large scales only as in a constant viscosity fluid.'* !>

In this work, we would like to shed some new light on this phenomenon by proposing the
idea that a flow with a variable viscosity has an effective Reynolds number which is higher than
a flow with the same average but constant viscosity. This theory supports Taylor’s postulate in the
case of variable viscosity fluids. But as importantly, it explains that when finite Reynolds effects
are observed, the variable viscosity effects slow down the decay of turbulence making constant and
variable viscosity fluids to behave quite differently.

This paper is organized as follows. In Sec. II, we write the basic equations and highlight
the particularities of freely decaying turbulence in a variable viscosity fluid. In Sec. III, several
direct numerical simulations are presented in order to show the variable viscosity contributions. In
Sec. IV, we propose a theoretical framework based on an Eddy-Damped Quasi-Normal Markovian
(EDQNM) closure for the variable viscosity and we utilize it to quantify its effects.

Il. GENERAL CONTEXT

In this section, the problem of decay of turbulence in a variable viscosity fluid is introduced.
The system of equations is described together with the different notations used in this paper in
Sec. IT A. In Sec. II B, we write the equation for total kinetic energy and show that an additional
term appears due to viscosity fluctuations.

A. Basic equations

We start from the incompressible Navier-Stokes equations for an homogeneous isotropic velocity
field ;. In this problem, the mean velocity of the fluid is assumed to equal zero, (u;) = 0. We note
() the ensemble averaging operator.

The total viscosity v, can be decomposed into a mean viscosity noted v (= (v)) and a fluctuation
V' = Ve (with (V') = 0) as

vtot=U+VC, (1)

where c is the scalar representing the temperature or the concentration fluctuations and V is a positive
constant. In real systems, the viscosity dependency is not necessarily linear and may follow a much
more complex relationship. Still, this idealized representation is relevant when the fluctuations of
the scalar are small. This linear dependence is also convenient as it enables quasi-normal closures
used later in this work.

Therefore, we obtain the following system of equations:

Btu,- +uj8jui = —B,p—i—Vaj (c8ju,-)+v812jui, (23)
Biui = 0, (Zb)
e +ujdjc = Kkdj;c. (2¢)

Equation (2a) is the equation for the velocity with p the reduced pressure (i.e., divided by the
density). Equation (2b) gives the incompressibility condition and Eq. (2¢) is the linear advection-
diffusion equation for the scalar. We use Einstein’s notations in the different equations.

In Eq. (2¢), the coefficient « appears, here taken constant, standing for conductivity or molecular
diffusion. The ratio v/k defines thereafter the Prandtl number (P, ) although it may refer to a Schmidt
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number alike. This parameter is of importance in the problem. Indeed, at high P,, the variance of ¢
is expected to maintain itself which should enhance variable viscosity effects in Eq. (2a).

Now we need to mention some properties of the scalar. Like the velocity and as already suggested,
the scalar has a zero mean value, (c) = 0. It becomes active in the momentum equation only through
the variable viscosity term, which is statistically isotropic. We assume that initially, it is bounded, ¢
€ [— 1, +1]. It will stay in this interval, because it obeys a linear advection-diffusion equation (for
incompressible flow). Also, note that VV < v to ensure the positivity of the total viscosity vy, at any
time and everywhere in the flow.

B. The dissipation in a variable viscosity fluid

In this context, multiplying Eq. (2a) by u;, averaging, using isotropy and homogeneity, we obtain
the equation for the mean turbulent kinetic energy Er = (u;u;)/2:
dET

7 = —&, with ¢ = (vmtajuiajui) = v(8ju,~8jui) +V(caju,~8ju,-) : (3)

€a &b

In Eq. (3), the dissipation ¢ is decomposed into two terms. The first one, &,, is the classical
expression of dissipation for a flow with constant viscosity v. The second term, ¢p, stems from
viscosity fluctuations. While the sign of ¢, is clearly positive like that of ¢, the sign of expression ¢,
is undetermined. It can be negative as long as ¢ > 0 and turbulent kinetic energy decreases. Then,
from Eq. (3) and the sign of ¢;, the following simple question arises: Does a fluid with constant
viscosity v dissipate less than a variable viscosity fluid with the same mean viscosity (v) = v?

In addition, it is important to quantify the effect of term &;. In particular, we try to determine
where it can be neglected or should be taken into account, and finally we derive a simple closure
which may be implemented in a turbulence model.

lll. DIRECT NUMERICAL SIMULATIONS

In order to study the problem proposed in Sec. II B, we performed several numerical simula-
tions with variable viscosities at different Reynolds numbers. The domain of computation for the
simulations is a cubic box of size 2, with triply periodic boundary conditions. The total number of
grid points is N°, with N ranging from 256 to 2048.

A. Numerical method

The DNS of variable viscosity equations are based on a slight modification of a code addressing
the classical uniform viscosity case.'® This previous code uses a standard pseudospectral collocation
method with phase-shift dealiasing (allowing to keep all Fourier modes with wavenumber k satisfying
k < +/2N/3) and a third order low-storage strong stability preserving Runge-Kutta scheme for
time advancing. Accurate integration of viscous and diffusion terms is obtained by including the
corresponding exponential damping term into each Fourier component.

The modification for computing the variable viscosity case is based on the splitting of the
viscous term in two contributions 0 [vdju;] = 9;[vodju;] + 9;[(vior — V0)0;u;] where vg is a uni-
form viscosity chosen lower or equal to the minimum value of viscosity in the flow v;,, in order that
the fluctuating viscosity (vf — Vo) remains positive everywhere. The contribution of the uniform
viscosity v is accounted for as usual in the standard part of the code whereas that of the fluctuat-
ing viscosity (v — Vo) is accounted for in an additional intermediate step before projection over
divergence-free velocity fields. That additional step amounts to solve d;u; = 9;[(Vir — V0)9;u;]. For
the sake of robustness, it is performed in the physical space with central finite difference approxi-
mations. Directional splitting is used with full implication in each direction requiring the resolution
of three-diagonal or penta-diagonal periodic systems to get second or fourth order spatial accuracy.
To enforce the positivity of the matrices of the systems to be solved, we introduce new constraints
on the time-step which become stringent when the maximum of |y, — Vo] grows.
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TABLE 1. Characteristics of the different numerical simulations of homogeneous isotropic turbulence with constant or
variable viscosity considered in this work.

Name Resolution v Vmin Vmax v2, (t=0) Pr R, Er(t=0)
SAO0 2563 0.5 0.5 0.5 0 1 0.17 0.75
SA1 256 0.5 0.01 0.99 0.71 1 0.17 0.75
SA2 2563 0.5 0.01 0.99 0.31 50 0.17 0.75
SA3 2563 0.5 0.01 0.99 0.71 50 0.17 0.75
SBO 5123 0.05 0.05 0.05 0 2.5 1.7 0.75
SB1 5123 0.05 0.001 0.099 0.19 2.5 1.7 0.75
SB2 5123 0.05 0.001 0.099 0.64 2.5 1.7 0.75
SB3 5123 0.05 0.001 0.099 0.81 2.5 1.7 0.75
SCO 10243 0.005 0.005 0.005 0 2.5 17.6 0.75
SC1 10243 0.005 0.001 0.009 0.48 2.5 17.6 0.75
SDO 10243 0.0005 0.0005 0.0005 0 2.5 176 0.75
SD1 10243 0.0005 0.0001 0.0009 0.47 2.5 176 0.75
SEO 20483 0.0001 0.0001 0.0001 0 1 866 0.75
SE1 20483 0.0001 0.00005 0.00015 0.19 1 866 0.75

We have run different tests to study the influence of the spatial order for the variable viscosity
term and the choice for vy (generally taken as vy;,). We have checked that the different options in
the numerical method do not modify the results of the simulations presented here.

B. Presentation of the simulations

The characteristics of the different simulations are displayed in Table I. Globally, we explore the
effects of variable viscosity through a large range of Reynolds numbers, different initial variances of
viscosity and to a lesser extent, several values of Prandtl numbers. The simulations are grouped into
5 categories corresponding to their initial Reynolds number which is based on the mean viscosity v, a
characteristic length based on the peak of initial spectra and the square root of the initial kinetic energy
injected in the system. Thus, we use the following expression for the Reynolds number as considered
for instance in Ref. 17 for freely decaying turbulence, Re = E lT/ 2(0) / K pearv. From this definition, the
different simulations SA, SB, SC, SD, and SE have respectively Re = 0.17, 1.7, 17, 170, and 866.

The initial energy spectra are of the von Karman type E(k, t = 0) « k4exp [—2(k/kpe,,k)2] with
a maximum located at kp.,x = 10. This value is a compromise between having a turbulent flow
and minimizing the effects of confinement due to the finite size of the domain (as well as ensuring
statistical convergence). In this work, we focus only on comparisons between constant and variable
viscosity fluids. We do not intend to provide the decay rates of turbulence as mainly driven by
the large scales. We just recall that the final decay of turbulence in our case evolves as ~2 as
shown by Ref. 14 for k* infrared spectra. The differences between constant and variable viscosity
configurations are expected to appear at large wavenumbers. For this reason, we tolerate slight
confinement effects which on the counterpart allows values of k.. smaller than 80 chosen by
Ref. 17 for instance and the exploration of higher Reynolds numbers. In addition, the amplitudes of
initial spectra are related to their initial kinetic energy as Er = f0+°° E(k)dk, set to 0.75 in all the
simulations.

The initial scalar spectra E..(k, t = 0) are taken proportional to the initial energy spectra E(k, ¢
= 0) such that they are also of the von Karman type with kp.. = 10. It is important to stress that the
initial velocity and scalar fields are not correlated in our simulations, (#;c) = 0. The amplitudes of
the scalar spectra are determined by the initial variance of viscosity (v'v’) with

+o0
W'y = V¥cc) = 2V? / E . (k)dk. 4)
0
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FIG. 1. Evolution of turbulent kinetic energy as a function of time for the simulations SA presented in Table I. Inset:
Evolution of the variance of viscosity fluctuations as a function of time.

In addition, the constant V is obtained from the initial maximum and minimum of viscosity specified
in Table I by the relation V = (Vax — Vmin)/2. When the variance (v'v’) is small compared to V2, the
initial distribution of viscosity is centred around v. However, for higher values and due to the fact that
in the simulations the viscosity is bounded to an interval, Vo € [Vimin Vmaxl, there is an accumulation
of viscosity values around extrema tending to an initial bimodal distribution (corresponding to
W'Y /1? = (Vmax — Vmin)>/(Vmax + Vmin)>). Of course, this distribution may be smoothed at later
times by diffusion. The ratio between maximum and minimum of viscosity varies according to the
simulations. It is close to 100 in SA and SB, 10 in SC and SD, and 3 in SE.

We impose the mesh size such that the smaller scales in the simulations with constant viscosity
are well resolved, and we verify that the spatial step taken is smaller than the Kolmogorov scale.'®
It is more difficult to establish a similar criteria for the variable viscosity cases. Ideally, we would
like to impose that an equivalent simulation with a constant viscosity taking the value vy, to be well
resolved. In practice, however, this criteria is very stringent so it is not always completely satisfied
at the very beginning of the simulations, in particular those at high Reynolds numbers (case SE).
Due to the resolution of the scalar field, we have to restrict the Prandtl number parametric study to
small Reynolds cases. The effect of high P, is tested against simulations SA and SB only where it
is possible to decrease « while keeping small scales of the scalar field well resolved.

The different time evolutions of kinetic energy and viscosity variance of the DNS are presented
in Figures 1-3 while the energy and scalar spectra at different times are shown in Figures 4-6. In
the figures displayed, the dimensionless time t is defined relatively to the initial eddy turnover time
1/ E1* () peat-

C. Observations

The aim of this section is to report different observations from the simulations concerning
variable viscosity effects. For the moment, we postpone the theoretical interpretation of these
results, they will be analysed later in the light of the statistical approach derived in Sec. IV.

The first point we would like to discuss is the sensitivity of variable viscosity effects to the
Reynolds number. In fact, the influence of variable viscosity is clearly visible on the time evolution
of kinetic energy and its dissipation at low Reynolds numbers (see cases SA-B in Figures 1 and 2).
These effects tend to vanish at higher Reynolds numbers where the different curves of evolution of
kinetic energy between constant and variable viscosity collapse (see cases SD and SE in Figure 3).
These observations agrees with Taylor’s hypothesis and with previous studies as for instance
Ref. 10, already mentioned.
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FIG. 2. Evolution of turbulent kinetic energy as a function of time for the simulations SB presented in Table I. Inset: Evolution
of the variance of viscosity fluctuations as a function of time.

When looking at energy spectra, the differences between constant and variable viscosity simu-
lations can be first perceived at very small scales (see Figures 4—6). In particular, it is striking that
all variable viscosity spectra develop a larger tail. Nonetheless, this does not contribute much to the
total kinetic energy on high Reynolds cases. It seems that variable viscosity fluids act as if they have
an effective Reynolds number higher than their constant viscosity counterparts. In this work, we will
try to develop and justify this point of view.
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FIG. 3. Evolution of turbulent kinetic energy as a function of non-dimensionalized time 7 for the simulations SC (top
left), SD (top right), and SE (bottom) presented in Table I. Inset: Evolution of the variance of viscosity fluctuations as a
function of .
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FIG. 4. Representation of the energy spectra (left column) and scalar spectra (right) as functions of the wavenumber for
simulations SA presented in Table I, at time 7 = 1.

Variable viscosity effects tend to reduce the decay of kinetic energy as suggested by Figures 1
and 2. More precisely, the higher the initial variance of viscosity is, the smaller is the dissipation.
This point is coherent with the phenomenology of higher Reynolds cases because the extra energy
is due to smaller scales as shown by the spectra (see Figures 4 and 5). Note that the influence
of variable viscosity does not last and the curves tend to collapse asymptotically at later time.
In fact, the variance of the scalar c¢ is also dissipated in the simulations due to the diffusion
term proportional to k. As a consequence, the variable viscosity term in the velocity equation is
damped.

By contrast, simulations SA2 and SA3 have a higher Prandtl number (P, = 50), which enables
viscosity fluctuations to persist longer. Although the mean Reynolds number is very low in these
simulations (Re = 0.17), spectra shows that energy is spread on a broader range of wavenumbers
than the constant viscosity case SAQ (see Figure 4). In addition to having high Prandtl number, SA3
has high initial variance of viscosity such that the flow have either vy = Vpin OF Viot = Viax- 1t i
interesting to observe that zones of intense kinetic energy may survive in regions corresponding to
low viscosity as shown by Figure 7. Therefore, turbulent eddies are confined and evolve in regions
of low and almost uniform viscosity. The flow in low viscosity regions has a higher Reynolds
number. In this context, the development of a spectra tail in Figure 4 can be interpreted as a regain
of importance of transfer terms compared to viscous ones. Of course, one needs to be very cautious
because this picture is only valid as long as exchanges of energy between high and low viscosity
regions can be neglected. This preliminary analysis needs to be corroborated within a theoretical
framework.

o
[oslovive]
St

E(k)at =1
E.(k)atT=1

FIG. 5. Representation of the energy spectra (left column) and scalar spectra (right) as functions of the wavenumber for
simulations SB presented in Table I, at time t = 1.
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simulations SC (top), SD (middle), and SE (bottom) presented in Table I, at time t = 2 (top), T = 6 (middle) and 7 = 6
(bottom).

IV. STATISTICAL APPROACH

In order to interpret the effects of variable viscosity observed in the simulations and investigate
the way it contributes to a diminution of the dissipation, we propose a statistical method. To this
purpose, we build an EDQNM model. This type of closure has been indeed successfully used to
model different types of turbulent flows such as isotropic turbulence,' the evolution of a passive
scalar with?>2! or without mean gradient,15 stratification or rotation effects,?>2 and premixed
turbulent flame propagation.>* Therefore, Sec. IV A is dedicated to the derivation of an EDQNM
model while Sec. IV B gives comparisons to DNS. In Sec. IV C, the concept of an effective viscosity
is proposed to evaluate variable viscosity effects.

A. Eddy-damped quasi-normal Markovian (EDQNM) approach

We write the equations of momentum Eq. (2a) in Fourier space. Fourier quantities as a function
of the wave vector k are identified by %. The reduced pressure can be eliminated by solving the
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FIG. 7. Visualization at 7 = 1.65 of the simulation SA3. Left: 3D representation of kinetic energy (top) and cut at middle
plane (bottom). High values of kinetic energy are represented in red while lower values are in blue. Right : Representation
of the viscosity: low viscosity regions are in blue and high viscosity regions are in yellow. Blue dashed lines show the
correspondence between turbulent structures and low viscosity regions.

Poisson equation such that we have:
1
(3, + oK) k. ) = =5 25,00 [ [ [ 000,06 it )

Y P(K) f [ / k;p;E(k — p. Diin(p. 1)dp.

with [ the imaginary unit number, P;,(kK) = §;, — kik,/k?* the projector operator, §;, the Kroenecker
symbol, k the modulus of wave vector k, and Pj;,(k) = k;P;, (k) + k,P;i(k) the Kraichnan operator.
In Eq. (5), quadratic nonlinearities between the velocity and itself or the concentration give rise to
a convolution product in Fourier space. The last term at the right-hand side accounts for variable
viscosity, it also expresses through P;,(k) the effects of redistribution by pressure. This is simply
due to the fact that the variable viscosity term is not divergence free. The term proportional to the
Kraichnan operator in Eq. (5) represents the classical nonlinear advection term and similarly its
redistribution by pressure (see Ref. 25).

In an EDQNM approach, turbulence is described by the second order moments which are in
our case, the spectrum E(k) related to kinetic energy E; = 0+°° E(k)dk and the scalar spectrum
E. (k) with (cc)/2 = 0+°° E..(k)dk. Now, we follow the method proposed by Orszag?® in order to
derive an EDQNM closure for the nonlinear variable viscosity term (see Appendix A). An important
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assumption is isotropy as it implies that the cross spectra between velocity and the scalar ¢ vanish.
This leads to the following equation for the energy spectrum (or Lin equation):

(8, + 2vk2) E(k,t) = T(k,t)+ I(k, 1), ©6)
with the transfer and variable viscosity term, respectively 7(k, t) and I1(k, ), given by
[ or & S
T(k,1)= Opg v E(q, Dbk, p, q) (K*E(p, 1) — p*E(k, 1)) dpdq, (7a)
Ay
k
Mk, 1) = V2 / / @,l;q%Ecc(q, (1 + 292> (K E(p,t) + p*E(k, 1)) dpdq. (7b)
A

The transfer term T(k, f) in Eq. (7a) is the well known expression in EDQNM for homogeneous
isotropic turbulence originally proposed by Orszag.!” The nonlinear viscous effects expressed by
I(k, 7) are detailed in Eq. (7b), this expression is the central result of this work. The integration
domain on plane (p, q), A, is defined such that triads of wave vectors exist, p + q + k = 0, (see
Ref. 25). The geometric parameter b appearing in the classical EDQNM transfer term is given by
b(k, p, q) = p(xy + z3)/k. The coefficient z is the cosine of the angle between k and p in the triad,
7= (k* 4+ p* — ¢*)/2kp. The coefficients x, y are defined similarly from the other inner angles of the
triad. In addition, the characteristic times @kTp 2 @2) J appearing during the combined Markovianiza-
tion and eddy-damping process, are given by the following expressions:

L —exp (= [v(k* + p* +¢7) + uk) + w(p) + u(@)] 1)
v(k? + p? + ¢?) + (k) + u(p) + 1n(q)

O, k. p.q.1) = : (8a)

1 —exp (= [v(k* + p?) + /() + 1/ (p) + kg” + 1" ()] 1)
v(k? + p?) + W k) + 1/ (p) + kq* + 1’ (q)
where u, ¢/, and '’ are relaxation rates for the different triple correlations. The specific terms u’

and u” due to variable viscosity need to be closed and are arbitrary chosen equal to the classical
expression first proposed by Ref. 26, for u, such that

Oy k. p. g, 1) = : (8b)

X 1/2
) = a ( / pZE(p,ndp) , (%)
0
k 1/2
1 k) = a (/0 sz(p,t)dp> : (9b)
k 12
W' (k) = a ( / p2E<p,r>dp> . (9¢)
0

In Egs. (92)—(9c¢), ay, a1, and a, are adjustable parameters. The value taken for ay is generally
0.36 in classical isotropic EDQNM models in order to recover the Kolmogorov constant value. In
our case, for the sake of simplicity, we choose all the parameters equal, ag = a; = a; = 0.36.

In order to get a complete model, it is also necessary to add an equation for the scalar spectrum.
Its complete expression is classical and can be found for instance in Lesieur.!” It is straightforward
to see that variable viscosity terms do not modify this equation in the isotropic case. Again, we take
the classical value 0.36 for the different constants.

Now, we derive the equation for kinetic energy by integrating Eq. (7b) with respect to k:

dEy e, o [T n Pk 21,2 (1,2 2
— == 2\)/ KRE(k, tydk —V / dk// O ZoE. (.01 + )2 (RE(p, 1) + p*E(k, 1) dpdgq
0 0 Ax q
S —

Eq &p

10)
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FIG. 8. Evolution of turbulent kinetic energy as a function of time for the simulations SB-0,1,2 compared to EDQNM model.
Inset: Evolution of the variance of viscosity fluctuations as a function of time.

The term ¢, and ¢, have been already defined in Eq. (3). Remark also that the integral of 7(k,
t) over wave numbers vanishes by definition of the transfer. We immediately note that &, is negative
in the EDQNM closure. This clearly shows that variable viscosity effects contribute to reducing the
dissipation of kinetic energy, as observed in the simulations.

B. Comparison DNS/EDQNM

In this section, we present different comparisons between DNS and the EDQNM isotropic
model, in order to validate the closure for the variable viscosity term and to assess the merits of our
statistical approach.

To begin with, we give some details about our EDQNM code. The numerical integration of
Eq. (6) follows the standard procedure proposed by Ref. 27. We use a logarithmic discretization
for the wavenumbers, such that k, = ky2"'F. The most difficult and time-consuming part of the
procedure concerns the evaluation of the different integrals |/’ a, 4pdq. We use the same scheme as in
Ref. 27 which preserves symmetries and integral properties of the continuous equations as for
instance f0+°° T (k)dk = 0.

We have tested the convergence up to F = 30 which allows to minimize numerical errors due
to elongated triads. In particular, the ratio between smallest and largest sides of triad should verify
% > 21/F — 1 as proposed by Ref. 15. This criterion is satisfied in the cases presented here
for triads having a side in the energetic wavenumbers and another one where viscosity effects are
significant at larger wavenumbers. As we will see, distant interactions are important in this problem
and to account for their effects, the code needs analytical corrections similar to those in Lesieur and
Schertzer?® for high Reynolds number configurations.

Also, caution must be taken when comparing DNS and EDQNM as the former simulates a
particular realization while the latter models statistical quantities. In addition, there is a bias because
the different fields are uncorrelated at the beginning of the DNS leading to initially null triple
correlations. On the contrary in EDQNM, triple correlations are modelled and have non-zero values
from start.

When looking at the time evolutions of kinetic energy, the EDQNM predictions are in relatively
good agreement with the DNS as shown by Figure 8. At later times, a slight underestimation of
viscosity effects is observed in all our comparisons. This tendency is more visible on cases where
the initial variance of viscosity is high.

We propose the comparison between DNS and EDQNM on spectra in Figure 9. EDQNM
seems to correctly predict the evolution of low and energetic wavenumbers. The trend to have
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FIG. 9. Representation of energy spectra at time v = 1 for simulations and EDQNM SB-0,1,2.

additional energy at larger wavenumbers characterizing variable viscosity effects is qualitatively
well reproduced in EDQNM. We clearly observe a discrepancy, specially at large wavenumbers.
This may explain the underestimation of variable viscosity effects in EDQNM compared to DNS. The
origin of this flaw may probably come from the form of the eddy damping terms p’, u’’ expressing
the closure of the fourth order cumulants. In fact, their expressions are not well justified here as they
are directly inspired from the closure for p appearing in the transfer T(k, ). Note that the tendency
to underestimate energy of small scales is also observed in constant viscosity EDQNM. This point,
still discussed in the turbulence community, is sometimes attributed to the fact that intermittency
effects are not taken into account in the model (see Ref. 15).

Despite some defects already mentioned, the EDQNM approach successfully reproduce the
diminution of dissipation in variable viscosity turbulence and also the persistence of energy in the
small scales. As a consequence, EDQNM is an interesting theoretical framework to interpret DNS
results and to analyse in depth the effects of the variable viscosity term.

C. The effective viscosity ves

In this part, we try to interpret further the expression for the variable viscosity term, I1(k, 7), in
Eq. (7b). The objective is to derive a simple relation accounting for variable viscosity effects. Then,
we will test the validity of the formula in the simulations.

In order to proceed, we need first to have an idea of which wavenumbers k have important
contributions to variable viscosity effects. In particular, the relative position of energy and scalar
spectra compared to these particular k has to be specified. At large Reynolds numbers, as suggested
by the simulations, I1(k, t) is expected to be negligible compared to T(k, ) in the inertial range
and at low wavenumbers. The main influence of I1(k, 1) is therefore expected to appear close to the
peak of dissipation (maximum of k?E(k, t)) which is well separated from the maxima of the energy
spectrum and more importantly the scalar spectrum. In this case, we propose an approximation for
Eq. (7b) based on distant interactions between wavenumbers k, p, g appearing in the triadic integral.
Its complete derivation is fully detailed in Appendix B and corresponds to the case (/) with ¢ < p
~ k. This approximation assumes also large ¢ in order to simplify the characteristic time @,2, 7
It gives

W),
Ik, t) ~ 2Tk E(k,1). 11

Substituting Eq. (11) in Eq. (6) demonstrates that at leading order and around the dissipation
maximum, the variable viscosity term behaves like a negative viscosity. Therefore, it is convenient
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FIG. 10. Representation of the different transfer terms (advection, variable viscosity, and dissipation) in the equation for
energy spectrum E(k) at T = 1 for cases SBO and SB2 from EDQNM simulations.

to introduce an effective viscosity derived from this EDQNM distant interactions approximation,

noted véﬁf):
(V")
v = (1 -—=. (12)

v

Equation (12) is a local expression accounting for the mean viscosity and its fluctuations. It is
expected to be valid at wavenumbers k where dissipative effects are most active. Therefore, after
integration over k, this formula should give a good global evaluation of all the viscous processes
acting in the flow.

Now, we check this approximation with our EDQNM simulations. It can be examined for
instance by looking at the different terms in the Lin equation, Eq. (6), respectively —2vk>E(k, 1),
T(k, t), and T1(k, f). Their contributions are shown in Figure 10 for SB cases. The SB cases have
very low Reynolds numbers so that transfer terms are very small compared to 2vk>E(k). However,
when mean viscosity effects are strong, the variable viscosity term, I1(k, 7), is also important and
tends to reduce the dissipation. As a result, small scales are less attenuated than expected, and this
explains the presence of extra energy in the simulations. We see from Figure 10 that the maximum
of Il(k, 1) is in fact located close to the maximum of dissipation although both maxima do not
totally coincide here. We can verify the validity of the distant interactions approximation, Eq. (11),
where the dissipation is important. For instance at k = 15, the ratio TT(k, 1)/2vk*E(k, t) with T =
1 in SB2 equals 0.32 which is close to the value of (v'v')/v? predicted by the distant interactions
approximation.

The validity of approximation Eq. (12) can also be checked globally on the total dissipation
after integration over wavenumbers. In fact, Eq. (12) embodies the idea that a flow with a variable
viscosity coefficient behaves like a flow with a constant but smaller viscosity. In the simulations, the
effective viscosity noted vg can be directly measured from:

Veff —% _ Eqt&p (13)
v v(a,ﬂujaiuj) Ea ’

where ¢, and ¢, are the terms composing the dissipation introduced in Eq. (3).

It is interesting to discuss the value of vy as a function of the variance of viscosity. In
Figure 11, we show the time evolution in plane ((v'v’)/v2, veg/v) of all the DNS and the EDQNM
simulation SB2. We also represent the approximation vgg derived from the EDQNM closure. First
of all, we would like to report that the EDQNM simulation converge well to the approximation
characterized by vééf) as expected (although SB2 has a low Reynolds number). In the DNS, the
trajectories start from vegr = v at t = 0 because, as already mentioned, the scalar and the velocity
field are initially decorrelated such that the term ¢, in Eq. (3) equals zero. Rapidly, ves decreases
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FIG. 11. Representation of the renormalized effective viscosity as a function of the renormalized variance of viscosity
fluctuations. Lines: EDQNM simulation of SB2 and non-local expansion of the EDQNM closure vgf) and vgfl). Symbols:
Different simulations presented in Table I. Black circles: DNS and EDQNM simulations of SB2 at T = 1 corresponding to
Figs. 9 and 10.

as a result of the appearance of variable viscosity effects. We can observe in some simulations
that ¢, may have same order of magnitude as the dissipation &,. Afterwards, vey grows while
the fluctuations of viscosity tends to zero. During this second stage, the approximation deduced
from EDQNM, vgf) , gives a higher value for v This is not surprising as we have observed
from comparisons with DNS, Figure 8, that the model underestimates variable viscosity effects.
In Figure 11, we also indicate the position at T = 1 of EDQNM and DNS SB2 simulation corre-
sponding to spectra in Figure 9 and sources terms of Lin equation in Figure 10. We see that the
effective viscosities vegr from DNS and EDQNM already differ although, looking at the compar-
isons between kinetic energy evolution (Figure 8), the different DNS/EDQNM curves are close. In
fact, the representation in plane ((v'v')/v?, vr/v) magnifies the distances between EDQNM and
DNS.

The two simulations SA2 and SA3, corresponding to high Prandtl number, seem to behave
differently. During the first stage, variable viscosity effects become much stronger compared to the
other cases. In fact, the variance of viscosity can maintain itself longer and variable viscosity effects
have more time to develop. Also, as observed in Figure 7, turbulent kinetic energy accumulates
in low viscosity regions. There, the low viscosity value vy;,, much smaller than the mean value
v, may give a first approximation for the effective viscosity of the flow (viin/v = 0.02 in SA2-3).
During the second stage, when variable viscosity effects tend to diminish, the effective viscosity is
much smaller than expected. In particular, the distant interactions approximation of EDQNM, vgf) ,
seems to overpredict variable viscosity effects (while it underestimates it in the other cases). We
propose the following argument to explain this phenomenon. First, we note that the maximum of the
scalar spectra, initially at k,cqx = 10, do not evolve much in the high Prandtl number simulations.
By contrast, the maximum of energy spectra is shifted toward the small wavenumbers as shown
in Figure 4. In fact, the Reynolds number is very low such that at first order E(k, t) = E(k, 0)exp
[—2vk%f] and E.(k, {) = E,.(k, 0)exp [ 2k k*{]. Therefore, the maxima of E(k, 7) and E...(k, 1) separate
when k¥ < v. Then in Appendix B, we derive a second type of distant interactions approximation
corresponding to case (II), k < p ~ ¢, which seems better suited for these cases. This gives from
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Eq. (B6) and assuming k < v:

8 (W)
v = (1 -5 ) ) (14)

In Figure 11, we see in fact that the approximation vgfl) from Eq. (14) is closer to the final stage
of SA2 and SA3. But in addition, we would like to remind that the distribution of viscosity is
nearly bi-modal in these simulations due to the relatively high Prandtl number (P, = 50) and strong
initial variance (v'v’). As a consequence, the distribution of ¢ is far from Gaussianity. As already
mentioned, in the EDQNM model, fourth order cumulants expressing this deviation from Gaussianity
are modelled by the eddy damping term. This is the weak point of our model and it probably explains
the origin of the discrepancy between DNS/EDQNM.

Finally, we would like to mention that a simple approximation as Eq. (12) can be of practical
interest for modelling flows with strong variations of viscosity. Since the variance of viscosity can be
directly expressed using the second order scalar correlation, which is usually computed in turbulence
models, Eq. (12) can be utilized to modify terms depending on physical viscosity.

V. CONCLUSION

In this study, we have investigated by the means of DNS the decay of homogeneous isotropic
turbulence in a variable viscosity fluid. Variable viscosity effects have been found negligible on
the overall turbulent kinetic energy at high Reynolds numbers as proposed by Taylor’s postulate.
However, we have observed significant differences with constant viscosity cases at moderate and
low Reynolds numbers. In these configurations, turbulence can maintain itself longer, particularly
if the variance of viscosity is important. More precisely, while in the high viscosity regions the
flow becomes laminar, the initial turbulent kinetic energy survives and can be transferred to the
small scales in low viscosity regions as shown by spectra. We may call “lumpy” turbulence this
coexistence of a laminar and a turbulent phase at the same time, entangled in low and high viscosity
regions.

In order to explain this physics, we propose the theory that a variable viscosity fluid behaves
like a fluid with constant but lower average viscosity coefficient. We justify this idea by developing
an EDQNM spectral closure for the additional variable viscosity term. The resulting model has been
able to successfully reproduce the variable viscosity effects despite a slight underestimation of their
intensity as shown by the comparisons with DNS. It clearly establishes that variable viscosity effects
diminish the value of dissipation as observed. In addition, the role of distant interactions between the
characteristic length of the viscosity fluctuations and the length of small turbulent eddies have been
identified through an asymptotic expansion of our EDQNM variable viscosity closure. Therefore,
we are able to quantify the effective dissipation of the flow due to variable viscosity. At leading

order, these effects can be perceived as an effective viscosity veg = v (1 — <”;Z/>>. We think this

opens the path to possible simple corrections in one point-statistical turbulent models.
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APPENDIX A: DERIVATION OF THE EDQNM CLOSURE

In order to get the EDQNM closure for the variable viscosity term, we follow the derivation
proposed by Orszag.?’> Note that other methods exist, as for instance expansions used for the DIA
model* which can be more efficient but also more complex.

First, we give the definitions for the different moments appearing in the statistical equations,
using the 3D Dirac function §:
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Sij(K)8(k 4 p) = (@;(K)it;(p)), (Ala)
Qk)é(k + p) = (¢(k)é(p)), (Alb)
Kij(k, p)d(k +p + q) = (@:(K)it;(p)é(q)). (Alc)

In this problem and as already mentioned, isotropy implies that the cross correlation between
the scalar and the different components of velocity is zero (it;(K)¢(p)) = 0. This leads to numerous
simplifications when deriving the quasi-normal approximation. In particular, we have

(i (k)i j(P)E(Q)E(r)) = Si;(k)d(k + p)Q(q)d(q + 1), (A2a)

(; (k) (p)it (q)e(r)) = 0. (A2b)

The equation for the second moment is deduced from Eq. (5):
(3 +2vk?) Sij(k, 1) = =V P, (K) //f kip K j» (=K, p, 1)dp

+Pu0 [ [ [ lipiKinte v dp + Tk 0. (A3)
Here, the nonlinear term coming from the advection and its redistribution by pressure is noted
We transform Eq. (A3) in order to obtain a more convenient expression using K}‘n (k, —p)
= K,(—k, p) (coming from the reality of u; and c¢ in physical space, 4;(k) = @i} (—k), ¢(k)
= & (—K)):
(3, +208) S,k.1) = =V ) [ [ [ hapik .~ 1ip

+VPju(K) /// kipi Kin(k, p, )dp + T;j (K, 7). (A4)

It leads by a change of variable p — —p in the first integral to

(3 +20k%) Sk, 1) = +V P (K) f / / kipi K, (k, p, 1)dp

+VPju(K) /[/ kipiKin(k, p, 1)dp + T;;(k, 7). (AS5)

Similarly, we write the equation for the third moment

v
(af + VK +vp? + [k + pF) Kij(&, p, 1) = +VPi (ki piSjn(p, ) Q(g, 1)
+VPin(PkipiSin(k, 1)0(q, 1), (A6)
where in Eq. (A6), @ = —k — p. Time-integrating the previous equation yields:
t
Kij(k,p,1) = V/ dsexp [—v(k> + p* + ¢* /Pt — 5)] x
0

(Pin(®)Sjn(p, $) + Pjn(P)Sin(K, ) piki Q(q, 5). (A7)

In order to derive the EDQNM closure, we reinject this integro-differential equation, Eq. (A7), into
the equation for the second order correlation Eq. (A5). We remark that for isotropic turbulence
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Si*j (k) = §;;(k), and we have always O*(k) = O(k).

(8, +2v&?) S (k, 1) = V? /// dpf dsexp [—v(k* + p* + ¢ /Pt — 5)] x

Pin(R) (k1 p1) (Pju()S,(P, $) + Prn(P)Sn(k, 8)) O(q, 5)

+V2///dp/ dsexp [—v(k* + p* + ¢ /Pt — 5)] x

P )k p1)* (Pin(K)Sun (D, 5) + Pun(P)Sin(k, 5)) Q(q, 8) + Tij(K, 1). (A8)

In order to obtain the equation for energy, it is sufficient to consider the trace only
t
(3, + 2vk?) Sii(k, 1) = 2V° /// dp/ dsexp [—v(k* + p* + ¢ /Pt — )] x
0

Pon(K)(kj p ;) (Pin(K)Sn (P, 8) + Poun(P)Sin(K, ) O(q, 5) + Tri(K, 1). (A9)

Now, the isotropic second order correlation tensor for velocity takes the form S;;(k) = £®) p.. i(K).

Ark?
Ec(k)

Concerning the scalar density, isotropy simply implies Q(k) = 325 . The equation is also Marko-

vianized, introducing the classical characteristic time ®p,,:

(3 + 2vK?) Sii(k, 1) =2V //[dp®kpq 0(a, ) P (K)(kj p;)* (Pin(K)Syn (P, 1) + Poun(P)Sin(K, 1))

(A10)

Substituting for Sj; and Q, E and E,. gives:

(3 + 20k%) E(k r) 2 ///d Otne ;c(q )(kjpj)z mn(k)Pmn(p)<E:’1;2t) L Ek r))

4 k?
T(k,1t)
4rk?
(A11)
We use the following simplifications (see Ref. 19) with z the cosine of the angle between k and p:
(kjpj)* = p*k*2, (A12)
Pmn(k)Pmn(p) =1+ ZZ’ (A13)

such that we have:
E(k,t) 2/// u(q, 1) 2 2,22 E(p,1) E(k,1)
0 +2 k = dp® 1+ kz
(0 +2v 4 k? =V 0 gr (LT EIP 47 p? * 4 k?
Tk, t)
4mk?

(Al4)

We use the change of variable:

/ / / F(k, p. q)dp = 27 / /A P4 gk, p. qdpdg. (AL5)

So that we obtain the final equation, Eq. (7b).

APPENDIX B: DERIVATION OF THE DISTANT INTERACTION APPROXIMATIONS

In this section, we propose to derive an approximation of the EDQNM closure for the variable
viscosity term I1(k, 7), Eq. (7b). In order to proceed, we need to evaluate the triadic integral [’ a dpdq.
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k<<p~q

p

FIG. 12. Representation in the plane (p, g) of the domain of integration Ay for the EDQNM closure. The coloured zones
represents the two different types of distant interactions leading to the expression for the effective viscosity.

Figure 12 represents the integration domain for a given wave number k. Here, we show the existence
of specific cases where it is possible to simplify the integral.

Case ():q < p~k

First, let us assume that the peak of the scalar spectra is located at very small wave numbers
compared to the peak of energy spectra as in Figure 13 (left). If we are interested in looking at
wavenumbers k where kinetic energy is important, then the integrated term in Eq. (7b) is significant
when ¢ is small compared to the wavenumber k. From Figure 12, we immediately see that the
main contribution of the triadic integral comes from the small corner g < p ~ k. It is important to
stress that this configuration does not only occur when E,.(k, ¢) and E(k, t) are well separated. For
instance, it is important to look at contributions of variable viscosity effects at the peak of k*E(k,
1) corresponding to maximum of dissipation. This peak is usually at larger wavenumbers and well
separated from the maxima of E(k, ) and E,.(k, t). Therefore, the contribution in the triadic integral
is also expected in this case to come from ¢ close the maximum of E.. and p near k at maximum of
K2E(k, 1).

In this context, we derive the distant approximation of Eq. (7b). Introducing a small parameter
€ such that g/k < € and fOJrOO E..(q,t)dq ~ f;k E..(q,t)dq, we can write

k
Mk, 1) = V* // @,g,q%ECC(q, (1 +29)2* (K*E(p. 1)+ p*E(k, 1)) dpdq., (Bla)
Ay
€k k+q pk
~ )2 / < / @,1;471556(61, (1 + 292 (K E(p, 1) + p*E(k, 1)) dp) dq. (B1b)
0 k—q

k k

FIG. 13. Representation of the assumptions on the relative position of energy and scalar spectra leading to the derivation of
the two distant interaction approximations expressing the variable viscosity effects. Left: case (I) ¢ < p ~ k, Right: case (II)
k<Lp~q.
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Then, we evaluate the integral over p in Eq. (B1b) using Taylor expansion around k of terms
depending of p. In particular, we have at first order E(p, ) ~ E(k, 1),z ~ 1, @,1;[,, P @,S( . This leads
to

ek
Mk, t) ~ V?8K*E(k, O, / E.(q,)dq, (B2a)
0
~ VK E(k, O (cc), (B2b)
~ 4Ok, E(k, 1). (B2¢)

At this stage, Eq. (B2c) gives a distant approximation depending on the characteristic time
@};}co(k, t). To simplify this expression further, we assume:

1. t— 400
2. kis large enough such that ' (k) < vk>.

The second assumption is strong and can be justified as follows: at large k, E(k, f) usually
decreases such that p(k) is not growing like k*. Note that a priori these additional hypotheses are
not directly related to the distance between wave numbers g and k. Using the definition for the
Markovian time ®™ Eq. (8b), we obtain:

O ok, t — +00) ~ 1/2vk>. (B3)
Injecting this expression into Eq. (B2c) leads to
W'y 5
[k, t) ~ 2——k“E(k, t). (B4)
v
In this expression, Eq. (B4), the variable viscosity contributions are proportional to k>E(k, f) which
suggests that they behave as a negative viscosity term.
Case (Il): k<p~q
There is another situation where it is possible to derive a distant approximation for the variable
viscosity term. We assume that the energy spectrum has a maximum at smaller wave numbers than
the scalar spectrum as suggested by Figure 13 (right). This means that the characteristic length of
the turbulent eddies is much larger than characteristic length of viscosity variations. In this case, the
interesting wavenumber k for the energy spectra to look at will be much smaller than g. Therefore,
the main contribution in the triadic integral for the variable viscosity terms will come from the k
<« p ~ q corner as represented in Figure 12. We introduce again a small parameter € such that
k<eqand [ E.(q,t)dg ~ f,:/fo E..(q,t)dq. We have

+0oo q+k p k
Mk, t) ~ vzf (/ Oy — Ecelq, (1 + 292 (K*E(p. 1) + p*E(k. 1)) dp) dg. (B5)
k/e q—k q
To evaluate the integral over p, we use Taylor expansion around ¢ in Eq. (BS) and ¢ small. In
addition, we simplify the Markovian characteristic time by taking the limit # — 4-00 and neglecting
the different eddy damping terms p’ and p'’. This gives the following expression for the variable
viscosity term:
16 (v'v')
Ik, t) ~ —
ISv+«
Equation (B6) expresses similarly that variable viscosity terms tends to decrease the physical vis-
cosity of the flow.
Remark that a third distant interactions approximation corresponding to p < k ~ g should be
theoretically possible although not corresponding to an interesting configuration for studying variable
viscosity effects.

kK*E(k, 1). (B6)
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