F. S. Godeferd, C. , and C. , Detailed Investigation of Energy Transfers in Homogeneous Stratified Turbulence, Phys. Fluids, vol.6, issue.6, pp.2084-2100, 1994.
DOI : 10.1063/1.868214

J. Griffond, B. J. Gr-ea, and O. Soulard, Unstably Stratified Homogeneous Turbulence as a Tool for Turbulent Mixing Modeling, ASME J. Fluids Eng, vol.136, issue.9, p.91201, 2014.
DOI : 10.1115/1.4025675

G. K. Batchelor, V. M. Canuto, and J. R. Chasnov, Homogeneous Buoyancy-Generated Turbulence, J. Fluid Mech, vol.235, issue.2, pp.349-378, 1992.
DOI : 10.1017/s0022112092001149

D. Livescu and J. R. Ristorcelli, Buoyancy-Driven Variable-Density Turbulence, J. Fluid Mech, vol.591, issue.11, pp.43-71, 2007.

D. Chung, P. , and D. , Direct Numerical Simulation and Large-Eddy Simulation of Stationary Buoyancy-Driven Turbulence, J. Fluid Mech, vol.643, pp.279-308, 2009.

J. Lazier, R. Hendry, A. Clarke, I. Yashayaev, R. et al., Convection and Restratification in the Labrador Sea, Deep Sea Res. Part I: Oceanogr. Res. Pap, vol.49, issue.10, pp.1819-1835, 1990.
DOI : 10.1016/s0967-0637(02)00064-x

O. Soulard, J. Griffond, and B. Gr-ea, Large-Scale Analysis of Self-Similar Unstably Stratified Homogeneous Turbulence, Phys. Fluids, vol.26, issue.1, p.15110, 2014.
DOI : 10.1063/1.4862445

A. Burlot, B. Gr-ea, F. S. Godeferd, C. Cambon, and O. Soulard, Large Reynolds Number Self-Similar States of Unstably Stratified Homogeneous Turbulence, Phys. Fluids, issue.6, p.65114, 2015.
DOI : 10.1063/1.4922817

URL : https://hal.archives-ouvertes.fr/hal-01298326

S. T. Thoroddsen, C. W. Van-atta, Y. , and J. S. , Experiments on Homogeneous Turbulence in an Unstably Stratified Fluid, Phys. Fluids, vol.10, issue.12, pp.3155-3167, 1998.
DOI : 10.1063/1.869842

G. K. Batchelor, The Role of Big Eddies in Homogeneous Turbulence, Proc. R. Soc. London, Ser. A, vol.195, pp.513-532, 1043.

A. Llor, Langevin Equation of Big Structure Dynamics in Turbulence: Landaus Invariant in the Decay of Homogeneous Isotropic Turbulence, Eur. J. Mech. B/Fluids, vol.30, issue.5, pp.480-504, 2011.

O. Poujade, P. , and M. , Growth Rate of Rayleigh-Taylor Turbulent Mixing Layers With the Foliation Approach, Phys. Rev. E, vol.81, issue.1, p.16316, 2010.
DOI : 10.1103/physreve.81.016316

URL : http://arxiv.org/pdf/0904.0557

D. L. Youngs, Numerical Simulation of Turbulent Mixing by Rayleigh-Taylor Instability, Physica D, vol.12, issue.13, pp.32-44, 1984.

G. Dimonte, D. L. Youngs, A. Dimits, S. Weber, M. Marinak et al., A Comparative Study of the Turbulent Rayleigh-Taylor Instability Using High-Resolution Three-Dimensional Numerical Simulations: The Alpha-Group Collaboration, Phys. Fluids, vol.16, issue.5, pp.1668-1693, 2004.

D. Livescu, T. Wei, and M. R. Peterson, Direct Numerical Simulations of Rayleigh-Taylor Instability, J. Phys.: Conf. Ser, vol.318, pp.1-10, 2011.

D. L. Youngs, The Density Ratio Dependence of Self-Similar Rayleigh-Taylor Mixing, Philos. Trans. R. Soc. London, Ser. A, vol.371, pp.1-15, 2003.

G. Dimonte, Spanwise Homogeneous Buoyancy-Drag Model for Rayleigh-Taylor Mixing and Experimental Evaluation, Phys. Plasma, vol.7, issue.6, pp.2255-2269, 2000.

G. Dimonte, P. Ramaprabhu, and M. Andrews, Rayleigh-Taylor Instability With Complex Acceleration History, Phys. Rev. E, vol.76, issue.4, p.46313, 2007.

P. Ramaprabhu, V. Karkhanis, and A. G. Lawrie, The Rayleigh-Taylor Instability Driven by an Accel-Decel-Accel Profile, Phys. Fluids, vol.25, issue.11, pp.1-33, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01725169

A. Burlot, B. Gr-ea, F. S. Godeferd, C. Cambon, G. et al., Spectral Modelling of High Reynolds Number Unstably Stratified Homogeneous Turbulence, J. Fluid Mech, vol.765, pp.17-44, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01298325

S. Gauthier and M. Bonnet, A k-e Model for Turbulent Mixing in Shock-Tube Flows Induced by Rayleigh-Taylor Instability, Phys. Fluids A, vol.2, issue.9, pp.1685-1694, 1990.

O. Gr-egoire, D. Souffland, and S. Gauthier, A Second-Order Turbulence Model for Gaseous Mixtures Induced by Richtmyer-Meshkov Instability, J. Turbul, vol.6, issue.29, pp.1-20, 2005.

A. Llor and P. Bailly, A New Turbulent Two-Field Concept for Modeling Rayleigh-Taylor, Richmyers-Meshkov, and Kelvin-Helmholtz Mixing Layers, Laser Part. Beams, vol.21, issue.7, pp.311-315, 2003.

J. Griffond, B. Gr-ea, and O. Soulard, Numerical Investigation of Self-Similar Unstably Stratified Homogeneous Turbulence, ASME J. Turbul, vol.16, issue.2, pp.167-183, 2015.

F. F. Grinstein, L. G. Margolin, and W. J. Rider, Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics, 2007.

Y. Zhou, Renormalization Group Theory for Fluid and Plasma Turbulence, Phys. Rep, vol.488, issue.1, pp.1-49, 2010.

M. Lesieur, Turbulence in Fluids, Fluid Mechanics and Its Applications Series, 2008.

S. Chen, G. Doolen, J. R. Herring, R. H. Kraichnan, S. A. Orszag et al., Far-Dissipation Range of Turbulence, Phys. Rev. Lett, vol.70, issue.20, pp.3051-3054, 1993.

V. M. Canuto, M. S. Dubovikov, and A. Dienstfrey, A Dynamical Model for Turbulence. IV. Buoyancy-Driven Flows, Phys. Fluids, vol.9, issue.7, pp.2118-2131, 1997.

Y. Zhou, H. F. Robey, and A. C. Buckingham, Onset of Turbulence in Accelerated High-Reynolds-Number Flow, Phys. Rev. E, vol.67, issue.5, p.56305, 2003.

H. Hanazaki and J. C. Hunt, Linear Processes in Unsteady Stably Stratified Turbulence, J. Fluid Mech, vol.318, issue.6, pp.303-337, 1996.

,. Gr-ea, The Rapid Acceleration Model and the Growth Rate of a Turbulent Mixing Zone Induced by Rayleigh-Taylor Instability, Phys. Fluids, vol.25, issue.1, p.15118, 2013.

B. M. Johnson and O. Schilling, Reynolds-Averaged Navier-Stokes Model Predictions of Linear Instability. i: Buoyancy-and Shear-Driven Flows, J. Turbul, vol.12, issue.36, pp.1-38, 2011.

N. J. Mueschke and O. Schilling, Investigation of Rayleigh-Taylor Turbulence and Mixing Using Direct Numerical Simulation With Experimentally Measured Initial Conditions. II. Dynamics of Transitional Flow and Mixing Statistics, Phys. Fluids, vol.21, issue.1, p.14107, 2009.

O. Schilling, Rayleigh-Taylor Turbulent Mixing: Synergy Between Simulations, Experiments, and Modeling, 12th International Workshop on the Physics of Compressible Turbulent Mixing, 2010.

O. Schilling and N. J. Mueschke, Analysis of Turbulent Transport and Mixing in Transitional Rayleigh-Taylor Unstable Flow Using Direct Numerical Simulation Data, Phys. Fluids, vol.22, issue.10, p.105102, 2010.

D. Souffland, O. Soulard, G. , and J. , Modeling of Reynolds Stress Models for Diffusion Fluxes Inside Shock Waves, ASME J. Fluids Eng, vol.136, issue.9, p.91102, 2014.

J. D. Schwarzkopf, D. Livescu, R. A. Gore, R. M. Rauenzahn, and J. R. Ristorcelli, Application of a Second-Moment Closure Model to Mixing Processes Involving Multicomponent Miscible Fluids, ASME J. Turbul, vol.12, issue.49, pp.1-35, 2011.

R. Watteaux, D etection des grandes structures turbulentes dans les couches de m elange de type Rayleigh-Taylor en vue de la validation de modèles statistiques turbulents bi-structure, 2012.

,. Gr-ea, The Dynamics of the k e Mix Model Toward its Self-Similar Rayleigh-Taylor Solution, ASME J. Turbul, vol.16, issue.2, pp.184-202, 2015.

R. Schiestel, Modeling and Simulation of Turbulent Flows, 2008.

A. Banerjee, R. A. Gore, and M. J. Andrews, Development and Validation of a Turbulent-Mix Model for Variable-Density and Compressible Flows, Phys. Rev. E, vol.82, issue.4, pp.70904-70916, 2010.