Electrostatic Self-Assembly of Diamond Nanoparticles onto Al- and N-Polar Sputtered Aluminum Nitride Surfaces - CEA - Commissariat à l’énergie atomique et aux énergies alternatives Access content directly
Journal Articles Nanomaterials Year : 2016

Electrostatic Self-Assembly of Diamond Nanoparticles onto Al- and N-Polar Sputtered Aluminum Nitride Surfaces

Abstract

Electrostatic self-assembly of diamond nanoparticles (DNPs) onto substrate surfaces (so-called nanodiamond seeding) is a notable technique, enabling chemical vapor deposition (CVD) of nanocrystalline diamond thin films on non-diamond substrates. In this study, we examine this technique onto differently polarized (either Al- or N-polar) c-axis oriented sputtered aluminum nitride (AlN) film surfaces. This investigation shows that Al-polar films, as compared to N-polar ones, obtain DNPs with higher density and more homogeneously on their surfaces. The origin of these differences in density and homogeneity is discussed based on the hydrolysis behavior of AlN surfaces in aqueous suspensions.

Dates and versions

cea-01874774 , version 1 (14-09-2018)

Identifiers

Cite

Taro Yoshikawa, Markus Reusch, Verena Zuerbig, Volker Cimalla, Kee-Han Lee, et al.. Electrostatic Self-Assembly of Diamond Nanoparticles onto Al- and N-Polar Sputtered Aluminum Nitride Surfaces. Nanomaterials, 2016, 6 (11), pp.217. ⟨10.3390/nano6110217⟩. ⟨cea-01874774⟩
219 View
0 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More