Désambiguïsation d’entités nommées par apprentissage de modèles d’entités à large échelle

Abstract : The objective of Entity Linking is to connect an entity mention in a text to a known entity in a knowledge base. The general approach for this task is to generate, for a given mention, a set of candidate entities from the base and determine, in a second step, the best one. This paper focuses on this last step and proposes a method based on learning a function that discriminates an entity from its most ambiguous ones. We adopt a model that is able to deal with large knowledge bases. Thus our contribution lies in the strategy to learn efficiently such a model. We propose three strategies with different efficiency/performance tradeoff. The approach is experimentally validated on six datasets of the TAC evaluation campaigns by using Freebase and DBpedia as reference knowledge bases
Complete list of metadatas

Cited literature [22 references]  Display  Hide  Download

https://hal-cea.archives-ouvertes.fr/cea-01857881
Contributor : Olivier Ferret <>
Submitted on : Friday, August 17, 2018 - 3:30:58 PM
Last modification on : Thursday, September 12, 2019 - 8:56:06 AM

File

23.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : cea-01857881, version 1

Citation

Hani Daher, Romaric Besançon, Olivier Ferret, Hervé Le Borgne, Anne-Laure Daquo, et al.. Désambiguïsation d’entités nommées par apprentissage de modèles d’entités à large échelle. 14ème COnférence en Recherche d'Information et Applications (CORIA 2017), 2017, Marseille, France. pp.185-200. ⟨cea-01857881⟩

Share

Metrics

Record views

470

Files downloads

106