Skip to Main content Skip to Navigation
Journal articles

Tailoring carbon nanotubes optical properties through chirality-wise silicon ring resonators

Abstract : Semiconducting single walled carbon nanotubes (s-SWNT) have an immense potential for the development of active optoelectronic functionalities in ultra-compact hybrid photonic circuits. Specifically, s-SWNT have been identified as a very promising solution to implement light sources in the silicon photonics platform. Still, two major challenges remain to fully exploit the potential of this hybrid technology: the limited interaction between s-SWNTs and Si waveguides and the low quantum efficiency of s-SWNTs emission. Silicon micro-ring resonators have the potential capability to overcome these limitations, by providing enhanced light s-SWNT interaction through resonant light recirculation. Here, we demonstrate that Si ring resonators provide SWNT chirality-wise photoluminescence resonance enhancement, releasing a new degree of freedom to tailor s-SWNT optical properties. Specifically, we show that judicious design of the micro-ring geometry allows selectively promoting the emission enhancement of either (8,6) or (8,7) SWNT chiralities present in a high-purity polymer-sorted s-SWNT solution. In addition, we present an analysis of nanometric-sized silicon-on-insulator waveguides that predicts stronger light s-SWNT interaction for transverse-magnetic (TM) modes than for conventionally used transverse-electric (TE) modes.
Document type :
Journal articles
Complete list of metadatas
Contributor : Serge Palacin <>
Submitted on : Tuesday, August 7, 2018 - 4:57:18 PM
Last modification on : Monday, December 7, 2020 - 10:02:39 AM

Links full text



Elena Duran-Valdeiglesias, Weiwei Zhang, Carlos Alonso-Ramos, Samuel Serna, Xavier Le Roux, et al.. Tailoring carbon nanotubes optical properties through chirality-wise silicon ring resonators. Scientific Reports, Nature Publishing Group, 2018, 8 (1), pp.11252. ⟨10.1038/s41598-018-29300-1⟩. ⟨cea-01855340⟩



Record views