R. Jasinski, A New Fuel Cell Cathode Catalyst Nature, pp.1212-1213, 1964.

H. Jahnke, M. Schönborn, and G. Zimmermann, Organic dyestuffs as catalysts for fuel cells
DOI : 10.1007/BFb0046059

. Chem, , pp.133-181, 1976.

S. Gupta, D. Tryk, I. Bae, W. Aldred, and E. Yeager, Heat-treated polyacrylonitrile-based catalysts for oxygen electroreduction, Journal of Applied Electrochemistry, vol.50, issue.1, pp.19-27, 1989.
DOI : 10.1007/978-1-4615-8561-9

M. Lefèvre, E. Proietti, F. Jaouen, and J. Dodelet, Iron-Based Catalysts with Improved Oxygen Reduction 604

, Activity in Polymer Electrolyte Fuel Cells, Science, vol.324, pp.71-74, 2009.

M. Shao, Q. Chang, and J. Dodelet, Chenitz, R. Recent advances in electrocatalysts for oxygen reduction

J. Masa, W. Xia, M. Mulher, and W. Schuhmann, On the role of Metals in the Nitrogen-doped carbon 608 electrocatalyst for oxygen reduction, Chem. Rev Angew. Chem. Int. Ed, vol.116, issue.54, pp.3594-3657, 2015.

G. Wu and P. Zelenay, Nanostructured Nonprecious Metal Catalysts for Oxygen Reduction Reaction, Accounts of Chemical Research, vol.46, issue.8
DOI : 10.1021/ar400011z

, Account for Chemical research, pp.1878-1889, 2013.

J. K. Dombrovskis and A. E. Palmqvist, Recent progress in synthesis and evaluation of non-Precious Metal 613 catalysts for the Oxygen Reduction Reaction, Fuel Cells, vol.612, issue.16, pp.4-22, 2016.

J. Liu, E. Li, M. Ruan, P. Song, and W. Xu, Recent Progress on Fe/N/C Electrocatalysts for the Oxygen 615 Reduction Reaction in Fuel Cells, pp.1167-119210, 2015.

D. K. Russel, Infrared laser powered homogeneous pyrolysis, Chemical Society Reviews, vol.19, issue.4, pp.407-437, 1990.
DOI : 10.1039/cs9901900407

B. David, O. Scheneeweiss, N. Pizurova, M. Klementova, P. Bezdicka et al., Dimitrache, 619 F.; Morjan, I. Fe3C nanopowder synthesized by laser pyrolysis and its annealing behavior

Y. C. Lin, J. Hong, C. Yen, S. Tong, M. Tung et al., X-Ray photelectron 674 spectroscopic investigation on Fe geometrical sites of iron nitride thin films, Jpn. J. Appl. Phys

J. Torres, C. C. Perry, S. J. Bransfield, and D. H. Fairbrother, Low temperature oxidation of nitride iron 677 surfaces, J. Phys. Chem. B, vol.10710, pp.5558-5567, 1021.

T. Susi, T. Pichler, and P. Ayala, X-ray photoelectron spectroscopy of graphitic carbon nanomaterials doped with heteroatoms, Beilstein Journal of Nanotechnology, vol.6, pp.177-191
DOI : 10.3762/bjnano.6.17

T. Kondo, S. Casolo, T. Suzuki, T. Shikano, M. Sakurai et al., Atomic-scale characterization of nitrogen-doped graphite: Effects of dopant nitrogen on the local electronic structure of the surrounding carbon atoms, Physical Review B, vol.86, issue.3
DOI : 10.1038/nmat2941

, DOI: 10.1103/PhysRevB, Phys. Rev. B, vol.8686, issue.035436, p.35436, 2012.

J. R. Pels, F. Kapteijn, J. A. Moulijn, Q. K. Zhu, and K. M. Thomas, Evolution of nitrogen functionalities in 685 carbonaceous materials during pyrolysis, Carbon, vol.33, issue.95, pp.8-686, 1995.

F. Kapteijn, J. A. Moulijn, S. Matzner, and H. Boehm, The development of nitrogen functionality in model chars during gasification in CO2 and O2, Carbon, vol.37, issue.7, pp.1143-1150, 1999.
DOI : 10.1016/S0008-6223(98)00312-1

K. J. Boyd, Carbon Nitride Deposited Using Energetic Species: A Two-Phase System Marton, p.691

A. H. Bayati, S. S. Todorov, and . Rabalais, J. Phys. Rev. Let, vol.73, pp.188-121, 1994.

H. C. Choi and J. Park, Distribution and Structure of N Atoms in Multiwalled Carbon Nanotubes Using 694

, Variable-Energy X-Ray Photoelectron Spectroscopy, J. Phys. Chem. B, vol.109, pp.4333-4340, 2005.

W. J. Gammon, O. Kraft, A. C. Reilly, and B. Holloway, C. Experimental comparison of N, issue.1s, p.697

, photoelectron spectroscopy binding energies of hard and elastic amorphous carbon nitride films with 698 reference organic compounds, Carbon, vol.41, issue.03, pp.1917-1923, 2003.

K. Artyushkova, A. Serov, S. Rojas-carbonell, and P. Atanassov, Chemistry of Multitudinous Active Sites 700 for Oxygen Reduction Reaction in Transition Metal?Nitrogen?Carbon, J. Phys. Chem. C, vol.119, pp.701-25917, 2015.

D. Marton, K. J. Boyd, A. H. Bayati, and S. S. Todorov, Rabalais, Carbon Nitride Deposited Using 703 Energetic Species: A Two-Phase System, J. Phys. Rev. Let, vol.73, pp.188-121, 1994.

J. Casanovas, J. M. Ricart, J. Rubio, F. Illas, and J. M. Jimenez-mateos,

, Energy in X-ray Photoelectron Spectra of Calcined Carbonaceous Materials, J. Am. Chem. Soc, vol.118, issue.707, pp.8071-8076, 1996.

J. M. Jimenez-mateos and J. L. Fierro, X-ray Photoelectron Spectroscopic Study of Petroleum Fuel Cokes, Surface and Interface Analysis, vol.1, issue.4
DOI : 10.1557/PROC-305-129

. Surf and . Int, Analysis, vol.224, pp.223-2361096, 1996.

B. Buesser and S. E. Pratsinis, Design of Nanomaterial Synthesis by Aerosol Processes, Annual Review of Chemical and Biomolecular Engineering, vol.3, issue.1
DOI : 10.1146/annurev-chembioeng-062011-080930

, Biomol. Eng, vol.2012, issue.3

B. Buesser and A. J. Gröhn, Multiscale Aspects of Modeling Gas-Phase Nanoparticle Synthesis, Chemical Engineering & Technology, vol.17, issue.7
DOI : 10.1021/cm051921h

. Technol, , pp.1133-1143, 2012.

G. A. Kelesidis, E. Goudeli, and S. E. Pratsinis, Flame synthesis of functional nanostructured materials and 715 devices: Surface growth and aggregation Proc, Energy Combust. Sci, vol.36, pp.29-50, 2017.

R. E. Strobel, S. E. Pratsinis, R. Amal, and L. Mädler, Flame aerosol synthesis of smart nanostructured materials, Journal of Materials Chemistry, vol.19, issue.5, pp.4743-4756, 2007.
DOI : 10.14356/kona.2004014

A. Dobbins and C. M. Megaridis, Morphology of Flame-Generated Soot As Determined by Thermophoretic 722

. Sampling and . Langmuir, , 1987.

C. Castro, Mécanismes de croissance de nanotubes de carbone alignés : relation catalyseur ? nanotube

F. Jaouen, E. Proietti, M. Lefèvre, R. Chentiz, J. Dodelet et al., Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuelcells, Energy Environ. Sci., vol.48, issue.6, pp.114-130, 2011.
DOI : 10.2172/970887

Q. Jia, N. Ramaswamy, U. Tylus, K. Strickland, J. Li et al.,

J. Anibal, C. Gumeci, S. Calabrese-barton, M. Sougrati, F. Jaouen et al.,

, Spectroscopic insights into the nature of active sites in iron?nitrogen?carbon electrocatalysts for oxygen 731 reduction in acid, Nano Energy 2016, vol.29, pp.65-82

Q. Jia, N. Ramaswamy, H. Hafiz, U. Tylus, K. Strickland et al., Experimental Observation of Redox-Induced Fe???N Switching Behavior as a Determinant Role for Oxygen Reduction Activity, ACS Nano, vol.9, issue.12, pp.12496-12505, 2015.
DOI : 10.1021/acsnano.5b05984

N. Sheng, X. Vankelecom, I. F. Pescarmona, and P. , Metal-free doped carbon materials as 737 electrocatalysts for the oxygen reduction reaction, J. Mater. Chem. A, vol.2, pp.4085-4110, 2014.

, 738 doi:10, 1039.

D. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo et al., Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts, Science, vol.116, issue.46, pp.361-365, 2016.
DOI : 10.1021/jp301341t

Y. Hu, J. O. Jensen, W. Zhang, L. N. Cleemann, W. Xing et al., Hollow Spheres of Iron 743

, Carbide Nanoparticles Encased in Graphitic Layers as Oxygen Reduction Catalysts, Angew. Chem. Int

E. , , pp.3675-3679, 2014.

U. I. Kramm, I. Herrman-geppert, P. Bogdanoff, and S. Fiechter, Effect of an ammonia treatment on 746 structure, composition, and oxygen reduction reaction activity of Fe-N-C catalysts, J. Phys. Chem. C, vol.747, pp.115-23417, 2011.

J. Liu, . E. Li, M. Ruan, P. Song, and W. Xu, Recent Progress on Fe/N/C Electrocatalysts for the Oxygen 749 Reduction Reaction in Fuel Cells, pp.1167-1192, 2015.

M. Ron and Z. Mathalone, C, Physical Review B, vol.48, issue.3, pp.774-777, 1971.
DOI : 10.1016/0029-554X(67)90320-5

URL : https://hal.archives-ouvertes.fr/in2p3-00137066

M. P. Pasternak, R. D. Taylor, R. Jeanloz, X. Li, and J. Nguyen, , p.753

, Collapse of Magnetism in Fe094O: Mössbauer Spectroscopy Beyond 100 GPa, Phys. Rev. Lett, vol.79, pp.754-5046, 1997.

A. Serov, K. Artyushkova, E. Niangar, C. Wang, N. Dale et al., Mukerjee, 756 S.; Atanassov, P. Nano-Structured Non-Platinum Catalysts for Automotive Fuel Cell Application, Nano, vol.757

, Submitted for possible open access publication under the 759 terms and conditions of the Creative Commons Attribution (CC BY) license 760, 758 © 2018 by the authors