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Consistent calculation of the screening and exchange effects in allowed β− transitions

X. Mougeot∗ and C. Bisch
CEA, LIST, Laboratoire National Henri Becquerel (LNE-LNHB), Gif-sur-Yvette, F-91191, France.

(Dated: June 14, 2014)

The atomic exchange effect has previously been demonstrated to have a great influence at low
energy in the 241Pu β− transition. The screening effect has been given as a possible explanation for
a remaining discrepancy. Improved calculations have been made to consistently evaluate these two
atomic effects, compared here to the recent high precision measurements of 241Pu and 63Ni β spectra.
In this paper, a new screening correction has been defined to account for the spatial extension of
the electron wave functions. Excellent overall agreement of about 1% from 500 eV to the endpoint
energy has been obtained for both β spectra, which demonstrates that a rather simple β decay
model for allowed transitions, including atomic effects within an independent particles model, is
sufficient to describe well the current most precise measurements.

I. INTRODUCTION

Beta emission probabilities from neutral atoms are
highly influenced at low energy by atomic effects, as
demonstrated in [1]. The sudden change of the nuclear
charge can induce atomic excitations (shake-up) or inter-
nal ionizations (shake-off) because initial and final state
orbitals are not strictly orthogonal. But the two major
atomic effects are the screening and the exchange effects.
The latter arises from the creation of a β electron in
a bound orbital of the daughter atom corresponding to
one which was occupied in the parent atom. An atomic
electron from the bound orbital simultaneously makes a
transition to a continuum orbital of the daughter atom.
This process cannot be distinguished from the direct de-
cay to a final state containing one continuum electron.

At present, precise knowledge of the shape of energy
spectra from β transitions, coupled with well-established
uncertainties, are sought by end users from the nuclear
power industry, the medical care sector ([2],[3]) or for
ionizing radiation metrology([4],[5]). These shapes have
been little studied since the late 1970s. At that time,
the knowledge of the spectral shape was thought to be
appropriate. Following this demand, a program to calcu-
late analytically the shape of β spectra for allowed and
forbidden unique transitions has already been developed
and described elsewhere [6]. This work improves it in
calculating exchange and screening effects consistently.

A β spectrum is the product of (i) a weak interaction
coupling constant, (ii) a statistical phase space factor
pWq2 which simply reflects the momentum distribution
between the electron and the neutrino, (iii) the so-called
Fermi function F0L0 which corrects for the Coulomb ef-
fects, and (iv) a shape factor C(W ) which contains all
the remaining energy dependencies, such as leptonic and
nuclear matrix elements or corrections for atomic effects.
Thus, following Behrens’ formalism used throughout this
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work [7]

dN

dW
∝ p W q2 F0L0 C(W ), (1)

with W = 1 +E/me the total energy of the electron de-
fined from its kinetic energy E and its rest mass me, the
corresponding momentum p =

√
W 2 − 1, and the neu-

trino momentum q = W0−W where W0 = 1+Emax/me.
The Fermi function, usually denoted by F (Z,W ), is

F0L0 =
α2
−1 + α2

1

2p2
, (2)

where the ακ are the Coulomb amplitudes of the electron
radial wave functions, defined in Sec. II B. The parameter
κ will be defined in Sec. II.

Denoting (Ji,πi) and (Jf ,πf ) the initial and final nu-
clear spins and parities, β decays are classified according
to ∆J = |Ji − Jf | and πiπf . For allowed and forbidden
unique β transitions, the energy dependence of the nu-
clear matrix elements can be factored out. Introducing
L = 1 if ∆J = 0 and L = ∆J otherwise, the shape factor
of an allowed (L = 1) or an (L − 1)th forbidden unique
transition is

C(W ) = (2L− 1)!

L∑
k=1

λk
p2(k−1) q2(L−k)

(2k − 1)![2(L− k) + 1]!
(3)

with k = |κ| and λk =
(
α2
−k + α2

k

)
/
(
α2
−1 + α2

1

)
. These

λk parameters have to be calculated numerically and the
procedure is not straightforward. For this reason, a usual
but not justified assumption is to set λk ≡ 1 in classical
β spectra calculations, even in the most recent ones [8].

In our previous study [1], the exchange effect was eval-
uated through Harston and Pyper’s formalism [9] using
the analytical electron wave functions given by Rose in
[10]. A remaining discrepancy was highlighted, possibly
due to the usual, but overly simple, screening correction
[11]. In the present work, we propose a consistent cal-
culation of these two atomic effects. The continuum and
bound orbital electron wave functions have been deter-
mined consistently using Behrens’ formalism [7], resolv-
ing numerically the Dirac equation within an indepen-
dent particle model. The complete process is given in
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Sec. II, detailing the structure of the atomic potential
for an extended nucleus including screened and exchange
potentials. Atomic corrections for allowed β transitions
are stated in Sec. III, with a new screening correction
for the β spectrum. These calculations are compared
to recent precise measurements of the 63Ni and 241Pu β
spectra in Sec. IV.

Consistent with Behrens’ formalism, natural units ~ =
me = c = 1 are used throughout this work, except when
explicitly specified. All numerical integrations were per-
formed using a three point lagrangian interpolation.

II. ELECTRON WAVE FUNCTIONS

A β− decay changes a neutron into a proton, eject-
ing an electron and an antineutrino. The relativistic be-
haviour of the electron within the Coulomb field of the
nucleus is described by the Dirac equation. The Coulomb
potential is assumed to be scalar, static and spherically
symmetric. The electron wave function can then be split
into a radial part and an angular part as [7]

Ψ(~r) =

(
Sκfκ(r)χµ−κ
gκ(r)χµκ

)
, (4)

with the electron radial wave functions fκ(r) (small com-
ponent) and gκ(r) (large component), the spin-angular
functions χµκ, and the sign of κ Sκ = κ/|κ| = κ/k. κ is

the eigenvalue of the operator K̂ = β(~σ · ~L + 1) which
appears by applying the theory of angular momentum to
an electron in a Coulomb central field: β is the Dirac

matrix, ~σ designates the Pauli matrices σx,y,z and ~L is
the orbital angular momentum operator. The usual spin-
angular functions χµκ are expanded into the orthonormal

basis of the spherical harmonics Y µ−ml

χµκ = ıl
∑
m

C(l1/2j;µ−m,m)Y µ−ml χm, (5)

with the Clebsch-Gordan coefficients C(...) and the two-
component spin eigenfunctions χm. l = k and j = l−1/2
if κ > 0, or l = k−1 and j = l+1/2 if κ < 0. Notice that
the factor ıl in this definition of χµκ is specific to Behrens’
formalism.

The Dirac equation therefore leads to the following sys-
tem of coupled differential equations

dfκ
dr

=
(κ− 1)

r
fκ − [W − 1− V (r)]gκ

dgκ
dr

= [W + 1− V (r)]fκ −
(κ+ 1)

r
gκ

(6)

with V (r) a central potential. Beyond free states, analyt-
ical solutions for fκ and gκ exist only for pure Coulomb
potential, i.e. V (r) = −αZ/r. Here, Z is the atomic
number and α the fine structure constant. These solu-
tions can be found in [10].

Even a slightly more complex description of the nu-
cleus requires a numerical solution. We have followed
the method described in detail in [7], where the electron
radial wave functions are expressed locally as power series
expansions.

A. Atomic potential

The structure of the atomic potential is essential in
the determination of the electron wave functions. Its
construction is detailed here with our choices regarding
the β spectra calculation in which we are interested.

Using Behrens’ method [7], a power series expansion of
the potential is also needed. Eqs. (6) exhibit two singular
points, r = 0 and r =∞. Assuming a local C∞ function,
the atomic potential can be expressed locally as a Taylor
series, namely, with r0 denoting an ordinary point,

V (r) =

∞∑
m=0

vm(0)rm, r ∼ 0 (7)

V (r) =

∞∑
m=1

vm(∞)r−m, r ∼ ∞ (8)

rV (r) =

∞∑
m=0

ṽm(r0)(r − r0)m, r ∼ r0 (9)

Notice that in β decay the initial system is a neutral
atom and the final system is an ion plus an electron at
infinity. The emitted electron thus feels the potential of
one elementary charge.

The general structure is the same as depicted in [7],
but the required information to perform the calculation
is very poorly documented in the literature. We give
below all the necessary equations and our choices for the
few parameters of this model.

1. Construction

To take into account the finite nuclear size effect in
β spectra calculations, the nucleus is decribed as a uni-
formly charged sphere with nuclear radius R, leading to
the usual quadratic behaviour of the potential inside the
nucleus. Further, the influence of the atomic electrons
has to be taken into account, e.g. through a screened
potential. A simple model for a neutral atom has been
adopted, well adapted to β decay [7]

V (r) = −αZ
r

N∑
i=1

aie
−βir = −αZ

r
φ(r), (10)

where ai and βi are fitted parameters for the considered
atom. These parameters have been tabulated many times
in the literature. The ones from [12] were chosen in this
study because of their completeness and their assump-
tion of independent particles. Using N = 3 is sufficient
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to represent a screened potential with good accuracy in
most applications.

The structure of the atomic potential has to be con-
sistent with the one described by Eqs. (7) to (9) where
the space is divided into three parts, and a quadratic be-
haviour inside the nucleus is required. This potential has
to be continuous in any point. A point R2, sufficiently
far away to ensure the convergence of the asymptotic so-
lutions, was introduced. To deal with the exponential
part in Eq. (10), a new space region has been defined
by introducing a radius R3. Within R3 ≤ r ≤ R2, the
remaining charge, which comes from the screened poten-
tial, is spread substituting the exponential by a second
order polynomial that ensures continuity at R3 and R2.

For evaluating the bound states, we have also ac-
counted for the fermion nature of the electrons, which is
characterized by exchange symmetry within the many-
particle description. An exchange potential, adopted
here, has already been introduced by Slater and depends
only on the electron charge density by applying the free
electron gas assumption [13]. Following Behrens’ formal-
ism, this exchange potential is

Vex(r) = K Fex φ
1/3
ex (r) with (11)

Fex =
3α

2

(
3Z

4π2

)1/3

, φex(r) =

N∑
i=1

ai
β2
i

r
e−βir. (12)

Some Hartree-Fock calculations include a parametrisa-
tion of Slater’s exchange potential, the convergence pro-
cess being performed also on these parameters [14]. This
possibility has been added to our exchange potential
through the adjustment of the constant K (see Sec. II B).
Notice that the charge density does not depend upon the
atomic orbitals, which might be expected since each or-
bital does not have the same number of electrons and
the same mean radius. The exchange potential can be
therefore ajusted for each orbital.

To simplify further notations, we introduce V ′ex and φ′

as the first derivatives of Vex and φ, and V ′′ex and φ′′ as
their second derivatives. All these considerations have
led us to define the following atomic potential

V (r) =



t1 +
t2
2
r2, 0 ≤ r ≤ R

(
−αZ

r

)[
Cφ(r) + δ +

C

αZ
rVex + δex

]
,

R ≤ r ≤ R3(
−αZ

r

)[
1− C + C

(
σt23 + µt33 + νt43

)]
,

R3 ≤ r ≤ R2(
−αZ

r

)
(1− C), R2 ≤ r ≤ ∞

(13)

where the following parameters have been defined

C =
Z − 1

Z
, δex = −CR

αZ
[2Vex(R) +RV ′ex(R)] ,

η =
∑
i

ai
[
1− (1 + βiR)e−βiR

]
, δ = 1− C + Cη,

t1 =

(
−3αZ

2R

)[
1 +

2

3
CRφ′(R) +

2

3
δex

]
,

t2 =

(
αZ

R3

)[
1− 2CR

αZ
Vex(R)

]
,

t3 =
r −R2

R3 −R2
, σ =

D2

2
− 3D1 + 6D0,

µ = −D2 + 5D1 − 8D0, ν =
D2

2
− 2D1 + 3D0,

D0 = φ(R3) + η +
R3

αZ
Vex(R3) +

δex
C

,

D1

R3 −R2
= φ′(R3) +

Vex(R3) +R3V
′
ex(R3)

αZ
,

D2

(R3 −R2)2
= φ′′(R3) +

2V ′ex(R3) +R3V
′′
ex(R3)

αZ
.

(14)
The first derivative of V (r), also continuous, and the

second derivative, have been established by straightfor-
ward calculations. The potential for continuum states is
simply obtained by setting all the exchange terms to zero
in Eqs. (13) and (14).

The parameters R2 and R3 influence the shape of the
atomic potential. For r ≥ R2, an electron in a continuum
state feels the potential of a unique charge. Thus, R2 is a
kind of atomic radius. The authors of [7] do not provide
any specific criterion to set R2 and R3. Being inspired by
[15], these parameters have been set to R2 = 350(W/p)
and R3 = 150(W/p). No convergence problem of the
asymptotic solutions was noticed in our study.

Validity of the asymptotic solutions of the bound
states, beyond R2, can be closer than for the continuum
states when considering inner orbitals. To speed up the
calculation, these parameters have been set differently for
the bound states. The radius R2 has been determined as
the smallest radius for which the asymptotic solutions
of the considered orbital converges. The radius R3 has
been empirically set to R3 ∼ R2/2 in order to smooth
the reconnection to the asymptotic potential.

2. Usable form for calculation

Particular attention has to be paid when going from
the potential of Eq. (10) to the potential defined in Eqs.
(7) to (9). For the continuum states, the atomic poten-
tial with screened potential but no exchange potential is
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needed. The following helpful relation was used

e−βr = e−βr0
∞∑
m=0

1

m!
(−β)m(r − r0)m. (15)

The vm coefficients have been established within the dif-
ferent space regions, in 0 ≤ r ≤ R

V (r) =

2∑
m=0

vmr
m with v0 = t1, v1 = 0, v2 =

t2
2

, (16)

in R ≤ r ≤ R3

rV (r) =
∞∑
m=0

vm(r − r0)m with

v0 = (−αZ)

(
δ + C

∑
i

aie
−βir0

)
,

vm = (−αZ)C
∑
i

aie
−βir0

(−βi)m

m!
∀m > 0,

(17)

in R3 ≤ r ≤ R2

rV (r) =
4∑

m=0
vm(r − r0)m with

v0 = (−αZ)[1− C + CU0],

vm = (−αZ)CUm ∀m > 0,

(18)

where Rd = r0−R2, t4 =
Rd

R3 −R2
, U0 = σt24 +µt34 +νt44,

U1Rd = 2σt24 + 3µt34 + 4νt44, U2R
2
d = σt24 + 3µt34 + 6νt44,

U3R
3
d = µt34 + 4νt44, U4R

4
d = νt44,

and in R2 ≤ r ≤ ∞

V (r) = v1r
−1 with v1 = −α. (19)

For the bound states, the parameter v1 is identical in
[R2,∞[. The vm coefficients within [0, R] and [R3, R2]
remain the same provided that the parameters t1, t2,
D0, D1 and D2 are evaluated by taking the exchange
potential into account.

In [R,R3], a specific treatment is required because of
the r−1/3 behaviour. In this study, an exact evaluation
of the potential was implemented. Eq. (9) is just the
Taylor series of any function f(r) in the vinicity of r0.
Thus we can define

∞∑
m=0

f (m)(r0)

m!
(r − r0)m =

∞∑
m=0

ṽm(r0)(r − r0)m. (20)

The three first terms of this series are trivial. The resid-
ual can be calculated exactly since the exact values of
the potential and its derivatives are known

Res = rV (r)−
2∑

m=0

f (m)(r0)

m!
(r − r0)m. (21)

A final third order term is therefore added, identifying
Res ≡ v3(r0)(r − r0)3. This cubic term of the series is
not exact, but the calculated potential is exact and the
polynomial exhibits an appropriate behaviour up to at
least m = 2. Of course, this requires a dense enough r
grid to have a small residual. In practice, this residual is
about 10−4% and always less than 0.1%.

B. Radial wave functions

In Behrens’ method [7], the electron radial wave func-
tions are expressed locally as power series expansions,
allowing Eqs. (6) to be solved using recurrence relations.
Special treatment is needed for the solutions relative to
the regular singular point r = 0, and for the asymptotic
solutions relative to the irregular singular point r = ∞.
Then, the calculation consists in evaluating the wave
functions near r = 0, near r = ∞, and step by step
between these two points in order to reconnect each so-
lution with the appropriate renormalisation and phase
shift. Coulomb amplitudes ακ are given, and defined, by
the reconnection of the solutions near r = 0 with the
ordinary solutions. They are linked to the values of the
radial wave functions at the nuclear radius. Similarly, the
phase shifts are given by the reconnection of the asymp-
totic solutions with the ordinary solutions.

In order to be sure of our calculations for the contin-
uum wave functions, the tables from [16] of various pa-
rameters used to calculate β spectra were recalculated.
Unscreened Coulomb functions (Table II in [16]) were
perfectly reproduced, and the ratios of screened to un-
screened Coulomb functions (Table III in [16]) were in
very good agreement for all Z. Incidently, this allows us
to calculate these parameters at any desired energy, es-
pecially the λk parameters involved in the shape factors
of Eq. (3), avoiding any interpolation in these tables.

For the bound wave functions, the procedure is basi-
cally the same but the orbital energy T is not known
in advance. An iterative procedure is needed which has
to start with a relatively good initial energy to ensure a
quick convergence toward the actual energy.

Behrens and Bühring have proposed a Newton itera-
tion method [7], used in this study. Starting from the
analytical energy T0 given in [10], the zeros of the follow-
ing estimator have to be found

D(T ) = gR(rM )fL(rM )− gL(rM )fR(rM ) (22)

with rM = γ(γ + n′)/αZ, using the recurrence relation

Tn+1 = Tn −D(T )/Ḋ(T ), (23)

with Ḋ(T ) the first derivative of this estimator. Our
calculation stops when |Tn − Tn−1| < 10−13.

This procedure is not sufficient because the power se-
ries expansions of the wave functions do not depend ex-
plicitly on the main quantum number n, but only on κ.
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Thus, for the same value of κ, several convergence ener-
gies are possible. The number of nodes of fκ and gκ have
therefore to be checked to select the desired orbital.

The orbital energy determines the oscillation frequency
of the radial wave functions. As an overlap between the
bound and continuum wave functions is needed for the
exchange effect, good accuracy of the orbital energy is re-
quired. Significant discrepancies have been found for low
lying orbitals using the procedure detailed just above.
An additional procedure has thus been implemented in
order to ensure good convergence. The one electron ener-
gies EDes of Desclaux in [17] have been choosen for their
completeness and for the quality of the calculations. The
K constant parameter of the exchange potential in Eq.
(11) is adujsted by dichotomy inside an empirical interval
Kmin = −2 and Kmax = 2. The convergence is reached
in about 10 iterations, when the orbital energy is close
to EDes at the 0.01% level, with a minimum of 0.1 eV.
Finally, notice that this method is generic in the sense
that the tabulated energies from [17] can be changed to
experimental ones, for instance.

To verify our calculations, the parameters of Table V
from [16] for the bound wave functions, useful in electron
capture calculations, were recalculated. Good agreement
for all Z has been obtained. The Coulomb amplitudes of
the bound wave functions given in Table IX by Bambynek
et al. [18] were also recalculated and good agreement has
also been achieved.

III. ATOMIC EFFECTS ON β SPECTRA

A. Exchange effect

The formalism of the exchange effect has already been
set out in detail in [19]. For allowed transitions, only β
electrons created in an s bound orbital of the daughter
atom can take part. This effect is expressed as a correc-
tion factor

[
1 + ηTex(E)

]
which modifies the β spectrum

defined in Eq. (1). The total exchange factor ηTex(E) de-
pends on the β electron energy E and involves an overlap
between the electron radial wave functions of the bound
and continuum orbitals. It can be written in terms of the
subshell contributions ηnsex

ηTex(E) =
∑
n

ηnsex (E) +
∑
m,n

(m6=n)

µmµn, (24)

and the exchange factor of the n-th subshell is given by

ηnsex (E) = f
(
µ2
n − 2µn

)
. (25)

The parameters µn and f are expressed using the bound
(f bn,κ, gbn,κ) and continuum(f cκ, gcκ) electron radial wave
functions evaluated at the nuclear radius according to

µn = 〈Es′|ns〉
gbn,κ(R)

gcκ(R)
, f =

gcκ(R)2

gcκ(R)2 + f cκ(R)2
. (26)

For s orbitals, κ = −1. 〈Es′|ns〉 is the overlap between
the initial bound orbital of the parent atom |ns〉 and the
final continuum orbital of the daughter atom 〈Es′| over
the entire space.

In contrast with our previous study [1] and the study
in [9], here the screened electron wave functions for both
the continuum and bound states have been determined
in a complete and consistent manner.

B. A new screening correction

When calculating a β spectrum, the screening effect
is generally corrected for using a constant Thomas-Fermi
potential which is subtracted from the total energy of the
particle [11]. This method creates a non-physical discon-
tinuity at the minimum energy defined by the Thomas-
Fermi potential [6]. This minimum energy is . 20 keV,
hence the discontinuity does not generally affect the prac-
tical use of the spectrum. Physically, the influence of the
atomic electrons is expected to be significant when the
β wavelength is comparable to the atom size, i.e. at low
energy. As it has been shown in [1], this simple method,
which allows analytical wave functions to be used, cannot
be reasonable for high Z and at low energy.

Beta spectra are classically calculated using the elec-
tron radial wave functions evaluated at the nuclear ra-
dius. To take the screening into account, it is not just
sufficient to renormalise the wave functions and evaluate
them at the nuclear radius because the screened poten-
tials are very weak at this distance, and so, the modi-
fication is completely negligible over the entire range of
the spectrum. For example, in the case of 241Pu and
using the parameters given in [12], one can evaluate
[1− φ(R)] = 7.24 · 10−6.

It is, in fact, necessary to take into account the spatial
extension of the wave functions. As described in [7], this
can be done by evaluating the transition matrix of the
corresponding β decay. However the calculations become
very complicated because the electron wave functions are
coupled with the nuclear matrix elements involved. To
avoid this difficulty, we can benefit from the parameter f
defined in Eq. (26) for the exchange effect. This parame-
ter represents the fraction of β electrons which emerge in
a continuum κ state if the exchange process is omitted.
Instead of squared wave functions evaluated at the nu-
cleus surface, the mean value of the squared radial wave
functions over the entire space has been used

g2
κ =

1

∆R

∫
∆R

g2
κ(r)dr, (27)

where ∆R is the effective integration interval. The cor-
rection factor that takes the screening into account is

Csc = 1− ∆Runsc
∆Rsc

·
(

1− fsc
funsc

)
, (28)

where the subscript sc (unsc) means that the screened
(unscreened) wave functions were used. In this way, the
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screening correction is physically meaningful because of
the definition of the Fermi function in Eq. (2).

C. Numerical procedure

The calculation of the exchange effect is performed in
two stages. First, the bound wave functions have to be
calculated and stored. The minimal sampling that corre-
sponds to the adaptive step given in [7] is used for the r
grid. The continuum wave functions are calculated at the
desired energies in the final β spectrum, with their own
adaptive r grids. Next, the overlap between the bound
and continuum wave functions can be determined, and
thus the contribution of each orbital and the total cor-
rection factor for the exchange effect.

To perform the calculation of the overlap, the bound
and continuum r grids are concatenated and the wave
functions are evaluated at these new points. However,
if the common grid is not sufficiently dense, numerical
fluctuations appear in the overlap calculation, and thus
in the final β spectrum. In practice, we observed that
a refined grid with just one more point between each
point of the common grid is sufficient to ensure good
convergence with a precision . 10−3%.

IV. RESULTS

Accurate calculations, based on inclusion of the vari-
ous effects covered above, have been performed for the
allowed transition of 63Ni and the first forbidden non-
unique transition of 241Pu. Radiative corrections have
also been included but their influence on the β spectrum
is negligible, as shown in [6].

63Ni decays entirely by β− emission to the ground state
of 63Cu. This allowed transition has an endpoint energy
of Emax = 66.980 (15) keV [20]. 241Pu decays mainly by
β− emission to the ground state of 241Am. This first for-
bidden non-unique transition, with Emax = 20.8 (2) keV
[21], fulfills the assumption of the ξ approximation and
can be calculated as allowed [22], as it has been proved
in [1].

The low maximum energies of these two transitions
make them ideal cases for evaluating the influence of the
atomic effects. The β spectra of 63Ni [23] and 241Pu [24]
were recently measured using metallic magnetic calorime-
ters. Each source was enclosed in a gold absorber as-
suring a 4π solid angle and 100% detection efficiency.
These spectra are first compared to classical β calcula-
tions, and then taking into account the screening and
exchange effects. The theoretical spectra were normal-
ized to the data by integration from 500 eV to Emax

for both 63Ni and 241Pu decays, for being as much as
possible independent of the statistical fluctuations of the
measurement.

A. A simple statistical analysis

To evaluate the global quality of our theoretical spec-
tra, some simple elements of statistical analysis are pro-
posed. For a set of n measurements {yi}, the fit quality
of a model, leading to n predictions {ythi }, with respect
to the data is given by the quantity

R2 = 1− var(êi)

var(yi)
. (29)

Valid for n � 1, this definition is general, without any
restriction on the type of model. This quantity falls in
0 ≤ R2 ≤ 1, where R2 = 1 corresponds to perfect predic-
tions. The modeling error is êi = yi − ythi . Non biased
estimators of the variances are

var(yi) =

n∑
i=1

(yi − y)2

n− 1
, var(êi) =

n∑
i=1

(êi)
2

n− p− 1
(30)

with y the simple mean of the measurements, and p the
number of parameters of the model. For β spectra, p = 2
was considered, namely the maximum energy of the tran-
sition and the normalisation of the theoretical spectrum
to the data. Therefore, the coefficient (1−R2) quantifies
the general disagreement between the measurements and
the predictions.

For the end user, this criterion does not provide any
information about the uncertainty of the emission prob-
ability at a given energy. We propose first to look at the
distribution of the standardized residuals

ri =
êi√

var(êi)
. (31)

If these residuals are almost equally distributed around
zero, it is appropriate to assume that they are distributed
according to a Gaussian probability variance var(ri). The

standard deviation σri =
√

var(ri) then gives an estimate
of the overall uncertainty of the calculated spectrum in
the energy range where the measurements exist. Notice
that this analysis is not relevant if the standardized resid-
uals are not equally distributed.

Given the energy thresholds of the measured β spectra
considered in this study, these statistical parameters have
been calculated from 500 eV to the maximum energy of
the transition for both 63Ni and 241Pu.

B. 63Ni beta spectrum

Fig. 1 presents the total exchange factor ηtot for the
63Ni decay, with the contribution of each orbital ηns.
These results are consistent with those calculated in the
framework described in [1] where relativistic analytical
wave functions and relativistic effective nuclear charges
had been used. Both in this previous framework and the
present one, a partial negative contribution of one orbital
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was found, creating a maximum in the total exchange
factor of 10.7% at 500 eV for this study.

Fig. 2 compares the experimental spectrum with three
theoretical predictions: an analytical β calculation, with-
out screening and exchange; a numerical calculation from
this work, with screening but without exchange; a com-
plete numerical calculation with screening and exchange.
Notice that the endpoint energy from the measured spec-
trum is Emax = 67.176 (173) keV [23]. This value dis-
agrees with the lastest evaluated one [20]. The latter
value comes from mass measurements and is therefore
well known. The value from [23] probably points out
some small non linear effects of about 0.1% that were
not taken into account within the data analysis. Never-
theless, this spectrum is the only one available of such
high quality at low energy. These two endpoint energies
were tested and the results did not change significantly.
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FIG. 1. (Color online) Total exchange factor ηtot for the
63Ni decay, with the contribution of each orbital ηns.

Eventually, an excellent agreement has been obtained
with the experimental spectrum if the screening and ex-
change effects are taken into account. The standard-
ized residuals are equally distributed around a mean
value of r = 0.093%. The standard deviation of the
residuals is σri = 1.03% and the global disagreement is
(1 − R2) = 0.028%. The discrepancy between 500 eV
and the energy threshold of the measurement at 200 eV
comes directly from the influence of the 3s orbital in our
calculation, but it is difficult to know if it is due to the
experiment or to the model. Mean energies are also in-
teresting quantities: Ean = 17.45 keV for the analytical
calculation; Esc = 17.40 keV for the numerical calcula-
tion with screening; Escex = 17.14 keV for the complete

calculation. As expected, the screening effect is weak for
this low Z nucleus, but the exchange effect is of impor-
tance, as is confirmed experimentally.
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FIG. 2. (Color online) Measured 63Ni β spectrum compared
to analytical calculation (green), numerical calculation with
screening (red), and numerical calculation with screening and
exchange (blue). Normalization to the data was done by inte-
gration from 500 eV to Emax. Standardized residuals between
the data and the most complete calculation are also given. A
zoom on the low energy region is also given.

C. 241Pu beta spectrum

Fig. 3 presents the total exchange factor ηtot for
241Pu decay, with the contribution of each orbital ηns.
These results are consistent with those calculated in the
framework described in [1]. The total exchange factor
is more pronounced in this study, with a higher con-
tribution of the inner orbitals. Fig. 4 compares the
experimental spectrum with the same three theoretical
predictions as for the 63Ni spectrum. The fall of the
experimental spectrum between 500 eV and the energy
threshold of the measurement at 300 eV is most likely
due to the data analysis. Excellent agreement has been
obtained with the experimental spectrum if the screen-
ing and exchange effects are taken into account. The
standardized residuals are equally distributed around a
mean value of r = 0.0019%. The global disagreement
is (1 − R2) = 0.040% and the standard deviation of the
residuals is σri = 0.99%. For the mean energies, we find
Ean = 5.24 keV, Esc = 5.18 keV and Escex = 5.03 keV.
As expected, the screening effect is strong for this high
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Z nucleus, equivalent to the magnitude of the exchange
effect, as is confirmed experimentally.
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FIG. 3. (Color online) Total exchange factor ηtot for the
241Pu decay, with the contribution of each orbital ηns.

V. CONCLUSION

A consistent calculation of the screening and exchange
effects in allowed β− transitions has been given in de-
tail. The exchange effect has been determined with
Harston and Pyper’s formalism [9], but using more pre-
cise relativistic electron wave functions calculated within
Behrens’ formalism [7]. Special care has been taken to
explain the details of these calculations because of the
lack of information available in the literature.

This work has demonstrated that a rather simple cal-
culation within an independent particles model is suffi-
cient to obtain a fine understanding of the atomic effects
that occur in β decays. A new screening correction that
accounts for the spatial extension of the electron wave
functions has had to be defined to reach the required pre-
cision due to the high quality of the measurements used
for comparison. Excellent overall agreement of about 1%
from 500 eV to the endpoint has been obtained for both
the β spectra of 63Ni and 241Pu decays. Even though
more complex calculations, such as multiconfigurational
Dirac-Fock ones, can take into account chemical effects
through ionised atomic states, they are not deemed nec-

essary due to the current precision of β spectra measure-
ments.

Finally, this work allows the exact calculation of the
leptonic matrix elements within Behrens’ formalism. The
obvious next step, on which we are currently working,
is to generalize the screening and exchange corrections
to forbidden unique transitions, which can be performed
without taking into account the nuclear matrix elements.
A longer term goal is the generalization to forbidden non-
unique transitions, which will inherently require the cal-
culation of the nuclear matrix elements. All these new
calculations will be compared to existing and available
new measurements.

Energy (keV)
0 2 4 6 8 10 12 14 16 18 20

C
o
u
n
ts

/1
0
0
e
V

0

2

4

6

8

10

12

14

16

18

20

22
3

10×

calculated as allowed

 = 20.8 keV
β

Pu, Q241

no exchange

no screening,

with screening

and exchange

with screening

0 2 4 6 8 10 12 14 16 18 20

R
e

s
id

u
a

ls
 (

%
)

2

1

0

1

2

3

4

0 0.5 1 1.5 2 2.5 3 3.5 4
10

12

14

16

18

20

22
3

10×

FIG. 4. (Color online) Measured 241Pu β spectrum com-
pared to analytical calculation (green), numerical calculation
with screening (red), and numerical calculation with screen-
ing and exchange (blue). Normalization to the data was done
by integration from 500 eV to Emax. Standardized residuals
between the data and the most complete calculation are also
given. A zoom on the low energy region is also given.
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