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Abstract

Wireless Sensor Networks (WSNs) led the way to new
forms of communications, which extend today the Inter-
net paradigm to unforeseen boundaries such as eHealth,
intelligent building or smart grid, to name a few. The
legacy industry, however, is slower to adopt this technol-
ogy, mainly for security reasons. Self-managed security
systems allowing a quicker detection and better resilience
to attacks, may counterbalance this reluctance. In this
article, we propose a hybrid threat detection system that
involves both centralized decision and local, per-cluster,
work repartition and that is designed to run on top of
industrial wireless sensor networks. Compared with the
literature, we prove that this system is suitable for archi-
tectures mainly composed of constrained and sleeping de-
vices, for which it achieves a fair level of autonomous secu-
rity without prohibitively drawing out energy resources.
Keywords: Energy efficiency, hybrid approach, intrusion
detection, resource constraints, wireless sensor network

1 Introduction

Wireless Sensor Networks (WSNs) changed the Internet
communication paradigm by introducing unattended de-
vices in a hitherto human-centric model. WSNs filled the
gap between the physical world and the Internet by of-
fering the ability to monitor in real time a wide range of
physical values through connected devices.

Initially built around very simple entities, technologies
and architectures, WSNs benefitted from a strong inter-
est from the international research community, which de-
signed in a few years a wide variety of new components
and systems. Dedicated radio technologies and routing
protocols were specified, as well as novel, complex archi-
tectures. These architectures evolved from a basic, unidi-
rectional topology made of multiple sensor nodes pushing
data to a server through a sink node, to more advanced
systems featuring bi-directionality. These new systems

paved the way towards the emerging Machine to Machine
(M2M) and Internet of Things (IoT) frameworks.

This gain of maturity of WSN technologies accelerates
their adoption in the industry, and this adoption is all the
quicker as WSNs answer to classical needs of industrial
scenarios: monitoring of physical values, asset supervision
and facilities surveillance are all key requirements in these
scenarios, for which dedicated sensor nodes are available.
Introducing actuators along with sensor nodes allows for
more complex operations such as asset control and better
production chain automation. Finally, the addition of
more complex entities, such as indoor positioning nodes
and mobile devices, to an existing sensor topology can
give rise to new services, also profitable for the industry.
For example, better worker safety can be achieved if the
production chain is able to detect a worker’s presence in
an unauthorized area, or to determine that a certain user
is not wearing adequate protection suit.

However, even though cost effective devices and
energy-efficient technologies and protocols are available,
the underlying security question impedes the use of WSNs
in the most critical industrial scenarios. The inherent vul-
nerability of WSN nodes, which is due to their exposed
location and their use of wireless communications, is such
that a WSN has to mimic all security features from the
legacy Internet, while also adding specific use cases and
taking into account the strong shortcomings of the WSN
nodes. Yet, strong security is often contradictory with
limited resources. Furthermore, the unattended nature
of WSNs and their autonomous decision taking upon a
context change put them at risk of triggering harmful be-
havior, if misled by an attacker.

We propose to leverage on this WSN autonomy to pro-
vide it with the ability to detect new threats and react
to them in the most appropriate manner. Contrary to
existing work, the proposed threat detection system is
lightweight enough to be run on resource-constrained sen-
sor nodes. It greatly improves the resilience of the in-
dustrial WSN, without bringing in excessive energy con-
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sumption. Our solution is based on a partly centralized
architecture and specifies new roles for WSN entities, in
accordance with their status and capabilities.

The remainder of this paper is organized as follows.
Section 2 quickly describes challenges related to the de-
velopment of a threat detection framework for WSNs and
highlights the limitations of existing approaches. Sec-
tion 3 describes the proposed threat detection solution
and its implementation on physical sensor devices. We
assess its performance when compared to main state of
the art solutions in Section 4. Section 5 concludes the
paper.

2 Problem Statement and Related

Work

The need for a threat detection system arises from the
need to protect WSNs against attacks. Obviously, we
assume that WSNs feature dedicated authentication and
access control routines, key establishment functions. The
security here is provided by the use of cryptographic prim-
itives, which protects the WSN from external attacks.
However, these security functions fail to protect the net-
work against an authenticated attacker from inside the
network: a sensor node owning legitimate cryptographic
keys can easily launch an internal attack inside the group.
It may be reluctant to make its resources available to
other nodes as part of a cooperative act. Therefore, such
a node may prefer to behave at times in a selfish man-
ner and refuse to cooperate in packet forwarding in order
to maximize its energy savings. On the other hand, a
legitimate sensor node can also act maliciously by drop-
ping packets, delaying the transmission or sending packets
through a different route than planned. Such an internal
attacker can only be detected through behavioral anal-
ysis mechanisms. The latter track the system behavior
and interactions between nodes to detect threat attempts
and/or occurrences. Once a security anomaly is detected,
a reaction mechanism is launched to take security and
service repair measures.

While highly relevant to the autonomous topologies
that wireless sensor networking involves, threat detection
raises issues with respect to its adaptability to these do-
mains. It challenges indeed the constrained nodes’ lim-
ited energy resources by involving complex processing and
high resource consumption.

Most of existing researches on threat detection systems
propose to mimic models proposed for Mobile Ad hoc
NETworks (MANETs) in order to counter internal at-
tacks inside WSNs [4, 8, 9]. These threat detection models
rely on monitoring agents deployed on each sensor node.
The goal of these local agents is to track the traffic within
their radio range and detect misbehaving nodes causing
routing disruptions. Authors in [10] define a threat detec-
tion system based on monitoring agents. They distinguish
between local agents (able to process only the packet they
actively forward) and global agents. Global agents act as

watchdogs by monitoring nearby traffic, especially when
they determine how a forwarding node has behaved (e.g.
difference, delay and loss between an incoming packet at
a neighbor). In addition to regularly monitoring global
agents, the authors introduce the concept of spontaneous
watchdog behavior: a node determines from a sensed
packet that it can be in position to act as a watchdog
for this packet. This node will first identify the number n
of its neighbors that could also act as watchdogs for the
same packet, and turns on its watchdog behavior for that
packet with a one-in-n probability. However, local pas-
sive monitoring has been shown to draw as much power
from the sensor node transceiver as data reception [13].
Ioannis et al. in [7] also apply the watchdog behavior,
with a higher emphasis on countering malicious monitor-
ing nodes. To that aim, cooperation through majority is
achieved, relying on an encrypted flag. That means that
a node will be classified as malicious only if a majority of
its neighbors flag it as such. The problem with the use
of watchdog behavior is that watchdog nodes will drain
their resources quickly.

Butun et al. in [3] review existing intrusion detection
systems in WSNs and highlight the fact that IDSs de-
signed for MANETs cannot be applied to WSNs directly.
Authors consider that resource constraints characterizing
the sensor nodes should be taken into account for the de-
sign of an IDS adapted to WSNs. Also, the fact that
most of sensor nodes are most of the time in sleeping
mode makes the operation of this security system more
complex, because synchronous node actions might prove
difficult, if not impossible, to achieve.

Other researches recognize that designed IDSs need to
spend the least amount of energy as possible to spare
enough energy for the crucial operations of the WSN.
For this reason, Huang and Lee propose in [6] an energy-
efficient monitoring system that fit the energy constraints
of sensor nodes. They select a single node to perform
monitoring at a given time within a given cluster. This
node is designated through a fair election process. Au-
thors claim that they obtain much higher energy efficiency
at an equivalent security level compared with systems
where all nodes perform monitoring at the same time.
They also provide a detailed set of rules that allow detect-
ing classical attacks expected to occur within a wireless
sensor network. Authors in [1, 12, 14] propose hierarchi-
cal trust management systems for WSNs to detect selfish
and malicious nodes. In these approaches, regular sensor
nodes do not participate in the global decision making
process. Only Cluster Heads (CHs) are responsible for
the global decision making process and the response. The
main reason for this is to reduce the energy consumption.
They wanted to conserve the energy of the majority of
sensor nodes, by simply assigning them as subordinates
under CHs.

These cluster based detection schemes consider that a
node is periodically elected to be the monitoring agent
within each cluster. However, the election process could
be heavy for constrained nodes -as demonstrated in what
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follows. In the same context, Butun et al. in [3] un-
derline that clustering based IDSs may consume consid-
erable amount of the WSN’s energy through exchanged
messages between nodes to periodically elect new moni-
toring agents.

3 Solution Description

3.1 Overview

Considering the inadequacies of existing approaches de-
scribed in the previous section, we propose an efficient
threat detection system for WSNs that aims at meeting
two key requirements. Considering the energy constraints
of sensor nodes will be the first key requirement for the
design of our system. Processing within sensor nodes will
be minimized in order to increase their lifetime. So that,
most of required operations are delegated to the server
side and the charge on the sensor node will be kept light,
which leads to extend the network lifetime. Offloading
the charge from the constrained nodes to the server is
not the only advantage of this approach. Having to send
its observations to the central server to take decisions,
a malicious node would not be in position to propagate
false assessments about specific victims. With a central
entity responsible for decision making, it becomes a com-
mon profit for all nodes to provide reliable evidences since
false ones can globally affect decision making at the cen-
tral entity, and could eventually be detrimental to the
attacker itself.

The second important key requirement is that a sensor
node is often in a sleeping mode, so that considering that
it is able to perform synchronous actions with other nodes
for threat detection as proposed in previous works would
be difficult to achieve. This problem will be carefully
taken into account for the design of our solution. Sen-
sor nodes will wake up only to collect data and perform
autonomous security-related actions, then revert back to
sleep mode.

3.2 Network Model

The wireless sensor network is supposed to be divided
into zones. Each zone contains one or more clusters and
each cluster contains one or more sensor nodes. Zones and
clusters have different criticalities, different security levels
and different security policies. It is also assumed that
sensor nodes within the same cluster can communicate
with each other. In addition, we assume that the awake
time is negligible compared to the sleep time. Finally, we
exclude any form of synchronization between nodes.

In a WSN, there are two types of nodes: sensing devices
and gateways (or servers). The sensing devices are simple
nodes equipped with radio interfaces only. The gateways
are equipped with an Ethernet port to communicate with
remote application servers and deliver collected data. The
Gateway has more computing capacities and unlimited
energy resources, as compared with a constrained sensor

node. Since these nodes are Ethernet-connected, assum-
ing that they are also connected to a power supply seems
a reasonable hypothesis.

3.3 Components and Roles

The security system we present in this paper is made up
of the following elements:

• Threat Detection Client : the TD client is in charge
of identifying threats and sending reports to the TD
server.

• Threat Detection Server : the TD server receives the
registration requests from sensor nodes. It chooses
which sensor(s) will be in monitoring mode for each
cluster by taking into account status parameters such
as batteries level and available resources. The TD
server updates the global network database. It re-
ceives the alarms from TD clients and transfers them
to the SA Server.

• Security Adaptation Server : the SA Server receives
the threats from the TD server. It decides then which
is the best policy to apply accordingly and stores the
new policy for sensor nodes in the security policy
mailbox.

• Security Adaptation Client : After each boot, the SA
Client sends a message to the SA Server to check
if there are any policies to be delivered and applies
those it receives in return.

• Security Service: Various security services are sup-
posed to run on the considered sensor nodes, but two
of them are especially relevant. A key management
service is assumed to be able to establish security
contexts between two nodes. The security level of-
fered by this service translates into various parame-
ters such as algorithms, key lengths or security asso-
ciation life-times. Another security service is the net-
work access control enforcement, which maintains a
secure connection between a sensor node and its par-
ent node in the WSN topology. This secure connec-
tion is established upon node’s entry into the WSN,
and remains active as long as the node is part of the
WSN. Both of these security services can raise alarms
to the local threat detection client even though the
node is not actively monitoring its neighborhood, for
example if a peer node cannot be authenticated (by
other sensor in case of key management, by parent
node in case of network access control enforcement).

• Security Policy mailbox : a module that stores the
generated policies. Then, it delivers them at nodes
request. The use of this module is required since
the nodes are not synchronized. It also reduces the
overall bandwidth consumption.

• Global Network Database: contains a global view of
the network and the threats detected in the past.
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It is populated every time a sensor registers to the
TD Server and is updated every time a new policy is
applied by the SA Server.

3.4 Operation

This section describes the sequences of actions performed
by the client-side and server-side entities. These se-
quences of actions are categorized according to the sensor
mode. This mode can either be bootstrapping, normal
mode, or monitoring mode.

Bootstrapping is the mode of a node when it joins
the network. The newly joining node is first to send a
registration request to the TD server, informing this latter
about its potential monitoring abilities. Upon reception of
this registration request, the TD server registers the node
and sends to the node an acknowledgement (ACK), as well
as a configuration message specifying whether the node
should remain in normal mode or switch to monitoring
mode for a specific amount of time. The decision by the
TD server is based on its knowledge of current and, in
some cases, foreseen contexts of the candidate monitoring
nodes. This contextual information includes data relevant
to the nodes resources (e.g. battery level), location, and
capabilities (e.g. number of observable neighbors). With
this information, the TD server is able to identify the
best node in the cluster for acting as a monitoring entity,
and to configure it with this role for a certain period of
time. Once the monitoring delay expires, the TD server
proceeds again to the identification and designation of
cluster monitoring node(s).

A node switches to Monitoring Mode when ordered
to do so by the TD server, either immediately after its
bootstrapping, or upon reception of a configuration order,
after waking up. The sequence of actions performed when
in monitoring node is:

1) Once the TD Client detects a threat, it sends an
alarm to the TD server that includes information
about the threat. This information contains at least
the IP address of the attacker, the IP address(es) of
the target(s) and the type of attack;

2) Upon receiving the alarm, the TD Server reports it
to the SA server, optionally after having aggregated
multiple alarm messages and/or having assessed the
quality of the evaluator. Next, it stores the new poli-
cies in the security policy mailbox, in order to have
them be delivered to the respective SA Clients that
will have to enforce them;

3) In monitoring mode, the TD client on the sensor reg-
ularly polls the security policy mailbox by sending a
dedicated inquiry message to the SA server;

4) The SA server sends the requested policy if it exists.
Otherwise, it replies with a message telling the node
that it is not to enforce a new policy. Along with
security policies, the monitoring node might be in-
structed to revert back to normal mode if another

monitoring node is being designated within the clus-
ter;

5) If a new policy is received, the SA Client enforces
it by configuring the security services in accordance
with the received policy and acknowledges it through
an ACK message;

6) The SA Server receives the ACK and updates the
global network database accordingly.

The monitoring mode sequence of actions is repre-
sented in Figure 1.

If a malicious node refuses to be placed as a moni-
toring node, the server could detect that no reports are
received from its side and then it could be penalized or
excluded from the network. If this node accepts the mon-
itoring process during a period of time but lets other col-
luding nodes execute attacks while sending positive ob-
servations on their behalf. The server can compare its
false reports with feedbacks received from other monitor-
ing nodes selected for the same cluster in different time
intervals. Hence, it will conclude its malicious behavior as
a monitoring node and take the appropriate punishment
decision against it.

The Normal Mode is the default mode for a boot-
strapped sensor node that has not been designated as a
monitoring node. In this mode, sensor nodes alternate
between active and sleeping states. Upon leaving sleep-
ing state, the node interrogates the SA server about an
eventual new policy to enforce. Meanwhile, the node in
normal mode may also be instructed to switch into mon-
itoring mode, if required from the evaluation of different
nodes energy levels within the considered cluster. The
node then performs the task(s) for which it has left the
sleeping state. An alarm may be raised by a node in Nor-
mal Mode only if one of the run tasks detects a threat.
This task would then notify the TD Client through an
API call.

The sequence of actions corresponding to normal mode
is represented in Figure 2.

3.5 Implementation Environment

The hybrid threat detection solution presented in this pa-
per was implemented using embedded C for sensor nodes,
with Atmel studio 6 for AVR/ARM and C++ for the
server side. We used Dresden Elektronik sensor devices [5]
that have the following specification:

• The gateways are equipped with ARM processor,
Ethernet port, power over Ethernet, USB/Serial and
IEEE 802.15.4 2.4GHz.

• The sensor devices are equipped with AVR Proces-
sor, battery, USB/Serial interface and IEEE 802.15.4
2.4GHz.

Both the gateway and the sensor node use 6LOwPAN
protocols. The sensor node turns to the Monitor Mode
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Figure 1: Threat detection and security adaptation in monitoring mode

Figure 2: Threat detection and security adaptation in normal mode
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Figure 3: Overall logical architecture and state machines

by switching its 802.15.4 interface to promiscuous mode
and disabling its sleep behavior. The overall process of
our solution, illustrating its state machines and inter-
nal/network message exchanges, is depicted in Figure 3.

4 Performance Evaluation

4.1 Performance Evaluation Criteria

In order to assess the performance of the proposed hybrid
threat detection system, it is worth detailing first all cri-
teria that should be taken into account for the evaluation
of a threat detection system. Indeed, a threat detection
system can be characterized with:

1) The proportion of false positives (benevolent be-
haviors wrongly identified as attacks) and that of
false negatives (malicious behaviors not identified as
such), as compared with the successful attacks iden-
tifications. These ratios and the corresponding per-
formance metrics assume the existence of a list of
detectable attacks {A1, . . . , An}. Accordingly, an
attack A′ not detectable - and thus not detected - by
the system would not be qualified as a false negative.

2) The exhaustivity of the detectable attacks list consti-
tutes a second evaluation metric. Ideally, this list

must be built in accordance with a risk analysis car-
ried out on the monitored system, so that the most
frequent and/or critical attacks be detectable by the
threat detection system.

3) The reactivity of the threat detection system that is,
the time needed to identify an attacker as malicious.
Finally, constrained environments characterized with
nodes of low capabilities in terms of computing power
and energy capacity exhibit additional requirements,
to which a fourth evaluation criterion corresponds.

4) The energy needed to locally (at constrained nodes
side) operate the threat detection system. This en-
ergy cost must be limited, so that the constant use of
this system will not consume a high amount of nodes
energy re-sources prohibitively fast.

The proposed solution for threat detection does not fo-
cus on mitigating false positives and false negatives. From
this viewpoint, the local detection algorithm is not im-
proved as compared to the state of the art solutions. Like-
wise, the weighting and aggregation of alerts at the server
side is recommended, but a novel method for doing so is
not part of the current proposal. Hence, our proposed
system will not be evaluated according to the first evalu-
ation criteria. Our proposed system does also not extend
the list of detectable threats, as defined by the second
evaluation criteria. The completeness of this list is seen
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as orthogonal to the current solution. We acknowledge,
however, the high relevance of this problem, especially
when put aside the (often neglected) nodes constraints in
terms of memory capacity. Indeed, an exhaustive list of
detectable attacks would require a corresponding memory
space for storing attacks signatures, which would not be
affordable to highly-constrained nodes.

While criteria (a) and (b) are thus not considered for
assessing the performance of our proposed threat detec-
tion system, the importance we put in the reduction of
energy consumption leads us to favoring criteria (d) as
the most important one for doing so. Meanwhile, we will
use the criteria (c) both to guarantee a proper behavior
of the proposed threat detection system even though it is
instantiated on highly-constrained nodes and to provide a
second metric to compare our solution to those proposed
in the literature.

4.2 Threat Detection Simulator

We evaluated the performance of our proposed threat de-
tection system by means of a purposely designed discrete
time simulator. This section first reviews the generic de-
sign decisions that were applied for conceiving this tool.
It then considers the models that were used to implement
on the simulator both the proposed system and the so-
lution proposed in [6], which is one of the most studied
threat detection system for WSNs, to which we intend to
compare our work.

The proposed simulation program Csimu (a lightweight
discrete time C-based network simulator) starts with ini-
tializing a WSN-like topology made of clusters and clus-
ter heads. It also initializes the threat detection system,
in particular by assigning per-cluster initial monitoring
nodes. We conceived our simulator as a program built
around a main loop, with each loop execution correspond-
ing to an elapsed (configurable) time step. A discrete time
approach is therefore adopted in this tool. The main loop
is made of the following operations:

• Storage of logged values including: overall energy
spent, overall energy spent for all threat detection
related operations, nodes compromise status.

• Per-node individual processing loop. This second
loop is the most important operation. It goes
through each node part of the generated topology
and performs relevant nodes actions. These consist
in:

• Storing per-node values relative to energy spent and
energy spent for threat detection operations.

• Updating node energy level in accordance with node
status during the last time step. For example, a
node that spent the last time step in ’Listen’ mode
will have its battery level decreased with an energy
E = ∆tTimestep × PListen, with ∆tTimestep being a
configurable parameter and PListen the power for the
considered node type in listening mode.

• Carrying out node tasks, e.g. uploading a measured
value to a remote sink node and updating node en-
ergy level accordingly.

• Carrying out attacks, in case the node is compro-
mised. Two types of attacks are represented: ADoS

is an example of Denial of Service attack and AComp

represents a compromise attack. Each attack involves
the following steps: determination of whether an at-
tack is to occur, choice of the to-be-attacked victim,
energy consequences on the attacking node (corre-
sponding to the number of messages to send/receive
and the listening durations involved by the attack),
energy consequences on the victim, other outcomes
on the victim (the ADoS attack has a chance to make
the victim compromised), attack detection. The at-
tack detection involves all nodes that are in position
to detect the launched attacks, taking in considera-
tions their respective locations (only neighbor nodes
are susceptible to discover the attack) and modes (the
probability of detecting the attack is much higher for
the nodes that are in monitoring mode). In turn,
when a node detects an attack, it may either be able
to pinpoint the attacker, or may just notice that an
attacker is likely to be present in the cluster. In ac-
cordance with the detection results and the imple-
mented threat detection system, various actions are
to be taken that are detailed in the next section.

• Threat detection system update (detailed in the
next subsection) that includes the exclusion of the
identified compromised nodes and, in random (non-
scripted) mode, a slight probability for each node to
become compromised.

4.3 Evaluated Threat Detection Systems

4.3.1 “All Monitor” and “Cluster Monitoring

Node Election” Systems

As explained in the related work section, the ”all mon-
itor” approach considers that each sensor device acts as
an independent monitoring node. Continuing in listen-
ing mode, each node tracks its neighbor’s communication
in order to identify possible attacks. The ”Cluster mon-
itoring node election” approach as proposed in [6] relies
on monitoring by an elected node, with election process
occurring periodically. In accordance with the protocol
description in [6], we simulated the election process as a
recurring procedure where:

• Each node has its energy level decreased by a decre-
ment corresponding to: (1) a random number genera-
tion - we assumed a hash-based random number gen-
eration; (2) the computation of a hash on the com-
puted random number and the node identifier; (3)
the sending of a message containing said identifier
and hash; (4) the waiting for receiving all messages
from neighbor (same-cluster) nodes; (5) the actual
reception of all of these (n-1) messages (n being the
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number of nodes within one cluster); (6) the verifi-
cation of all received messages through the computa-
tion of (n-1) hashes; (7) the operation of the selection
function; (8) the sending of a result message.

• As a result of the election, a new node becomes re-
sponsible of cluster monitoring. That is, the former
monitoring node reverts back to the ’normal’ behav-
ior (sleeping mode, with periodic wake up) and the
newly elected monitoring node switches to the ’mon-
itoring’ behavior (listen mode) for the next period.

4.3.2 Our Hybrid Solution

We implemented our proposed approach on the Csimu
simulator by adding within the server processing opera-
tion a phase where the threat detection server periodically
designates a new monitoring node within all clusters. To
that aim, the server maintains a view of the network nodes
statuses, which makes it able to designate for each cluster
the node with the highest energy level as the new moni-
toring node. The process happens thus as follows:

• Upon waking up, each node sends to the threat de-
tection server a message prompting for orders and
informing the server about its current battery level.
The server answers accordingly. The energy costs
corresponding to message sending and response wait-
ing, receiving and processing are taken into account
and decremented from the nodes energy levels.

• Periodically, the server triggers a new designation
of a cluster monitoring responsible node. This does
not incur any immediate action. However, the sub-
sequent request for orders of the former monitoring
node and the newly designated monitoring node will
make these learn, respectively, their orders to switch
into ’normal’ and ’monitoring’ modes.

• The protocol that was implemented in the simula-
tor introduced a slight variation as compared to the
approach described above: each cluster is initialized
with no active monitoring node. It is assumed that
nodes in normal mode can pinpoint - even with much
higher probabilities of false positives and false neg-
atives - malicious behaviors and consequently warns
the threat detection server, which will in turn mark
the cluster as suspicious and assign a monitoring
node within its population. The metrics for identify-
ing clusters (proposed approach) / nodes (both ap-
proaches) as suspicious / compromised are explained
in next section.

4.4 Simulation Parameters: Assump-

tions and Devices Characteristics

This section reviews the simulation parameters that are
used in the simulation environment to rate nodes behav-
iors, on one hand, and to assess energy consumption, on
the other hand.

4.4.1 Assessment of Attack Probability

Without implementing any actual attack detection
scheme, we based our simulated threat detection function
on a probabilistic model of attack detection, where each
behavior (A1, . . . , An attacks, as well as the ’A0’ benevo-
lence) can lead to a detection of any behavior within the
(A0,

A1, . . . , An) population, with different probabilities.
This led us to define an attack recognition matrix MAR

as:

MAR =











p(DA0
|A0) p(DA1

|A0) · · · p(DAn
|A0)

p(DA0
|A1) p(DA1

|A1) · · · p(DAn
|A1)

...
...

...
...

p(DA0
|An) p(DA1

|An) · · · p(DAn
|An)











where p(DX |Y) corresponds to the probability to detect
the event X knowing that event Y occurred.

In fact, two such matrices were defined corresponding
to the two modes in which a node can be, respectively nor-
mal mode (non-monitoring node involved in usual node
operations only) and monitoring node. The probabili-
ties were tuned accordingly, to reflect the fact that a
node in monitoring mode is much more accurate in its
identifications, whereas the probabilities of false positives
(p(DAi| A0) > 0 for some i>0) and false negatives (p(DA0

| Ai) > 0 for some i>0)are much higher for a node in nor-
mal mode.

Based on this matrix, we were able to compute the
probability of actual attack (whatever the Aj , j∈ [1; n])
occurrence upon the detection DAi of a given event Ai.

p(Attack|DAi
) =

p(DAi
∩Attack)

p(DAi
)

=
p (DAi

∩ (A1 ∪ · · · ∪An))

p(DAi
)

=

∑n

k=1
(p (DAi

Ak) .p(Ak))
∑n

k=0
(p (DAi

Ak) .p(Ak))

=

∑n

k=1
(MAR [k, i] .p(Ak))

∑n

k=0
(MAR [k, i] .p(Ak))

In this computation, the elements MAR[k, i] are the
coefficients of the MR matrix defined above. The p(A0),
p(A1), . . . , p(An) probabilities of occurrence of events
A0, A1, . . . , An are however other parameters that are
required, and for which only approximate values can be
used. In the simulator we used values derived from the
probability of node compromise, and, for a compromised
node, the probability of launching a typei attack Ai.
In actual conditions, where these probabilities of attacks
cannot be precisely known, the system should use cogni-
tive behavior where the optimal values of p(Ak) would be
statistically approached from the history of past detected
events.

With an attack detection being mapped to the prob-
ability of actual attack occurrence, we were able to in-
crease node compromise scores by a proportional coeffi-
cient. Eventually, we defined four thresholds t1, t2, t3, and
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Figure 4: Energy consumption for threat detection operation in all three evaluated systems

t4 respectively for marking a cluster as ’to be monitored’
(when the cluster score exceeds t1),marking a cluster as
’no longer to be monitored’ (when the cluster score falls
below t2), marking a node as ’likely compromised’ (when
the node score exceeds t3) and marking a node as ’likely
benevolent’ (when the node score falls below t4

1). We
made the cluster and node scores decremented at each
execution of the main loop, to mitigate false positives
and let the system revert back to normal state after a
compromised node has been excluded.

4.4.2 From Node Characteristics to Computa-

tion Parameters

We used the node characteristics listed in [11] correspond-
ing to the following parameters: power in transmit mode
(54 mW), power in receive mode (61 mW), power in listen
mode (60 mW) and energy consumption for one processor
cycle (8.64 nJ / cycle). Likewise, sensor nodes through-
put was supposed to be equal to 75 kbps, as determined
in [11].

Random number generation and hash function required
in [6] were assumed to be based on the SHA-1 hash func-
tion, for which the required number of cycles per byte
was computed, based on eBASH [2], to be 53.24 on the
considered processor for a less than 64-byte long message
(the shorter the message, the higher the cost for hashing
one byte, due to the SHA-1 fixed operations that do not
depend on message length).

1We did not use that fourth threshold, though in our simulation:

instead, we considered that a compromised node was to be removed

from the system; and could optionally be re-introduced after a while

- but considered as an entirely new node.

4.5 Simulation Results

This section reviews the obtained results in terms of en-
ergy cost and efficiency, which prove that our proposed
system, though slightly slower to react to malicious oper-
ations, is more energy-efficient than the other evaluated
solutions.

4.5.1 Energy Consumption

Figure 4 presents the overall energy consumption during
all processes related to threat detection for a 5-cluster, 50-
node topology. This energy consumption is expressed in
Joules per 10−1 s for the three evaluated systems, namely
’All monitor’ (all cluster nodes stay in monitoring mode),
’Elect’ (there is only one monitoring node per cluster,
which is regularly refreshed through an election carried
out between the cluster members [6]) and our proposed
’Hybrid’ scheme.

As was expected, the ’All monitor’ approach is the
most requiring in terms of energy with the 50 nodes (ac-
tually, 45 sensor nodes, since energy consumption is not
measured on gateways by the simulation environment)
consuming around 135 J in 50 s (a result that corresponds
to the 60 mW that each node consumes in listening).

Figure 4 also highlights the high energy cost of [6], due
to its heavy election processes. Even though only one
node monitors a cluster at a time, the cost of election
phases (the vertical transitions between plateaus in the
curve) does not allow an overall energy gain higher than
33%, as compared with the ’All monitor’ approach.

In order to highlight the difference between the local
election phase of [6] and the server-assisted monitoring
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node designation we proposed, we simulated in Figure 4
a synchronous approach of our hybrid approach, where
all cluster nodes in all clusters perform mailbox check-
ing (and, if required, mode change) at the same moment.
Nevertheless, the vertical transitions are much smaller
than those of [6], as could be expected from the lighter
requirements exhibited by the mailbox checking, as com-
pared to local election processing. Eventually, our so-
lution performs approximately twice better than [6] and
three times better than the ’All monitor’ approach, with
a final threat detection energy cost of only 44 J for 45
sensing nodes in 50 seconds (around 20W for each node).
It has to be noted that the exponential-like allure of the
’Hybrid’ system curve corresponds to the tuned behavior
of the system, wherein clusters are initially not monitored
(and consume almost no energy for threat detection) and
start to get monitored only when compromised nodes re-
veal their malicious activities and are suspected by nodes.
This leads to an acceleration of the energy consumption,
which quickly reaches a cruising speed, where all clusters
are monitored.

4.5.2 Threat Detection Reactivity

The behavior of all three simulated solutions with respect
to compromised nodes identification is detailed below in
Figure 5, Figure 6 and Figure 7.

Figure 5, Figure 6 and Figure 7 represent the com-
promise/react graph for each of the three simulated mod-
els. The dark, diamond-marked curves represent the num-
ber of unidentified compromised nodes within the system.
The light, square-marked peaks represent detections of
compromised nodes, and correspond therefore to a de-
crease of the other curve. Note that all three threat de-
tection systems were tested in the same conditions, with
compromising of the same nodes being triggered at the
same time (scripted, non-random, compromising mode).

From these results, it appears that the ’All Monitor’
approach performs the best with respect to speed in threat
identification. Cluster election and the proposed hybrid
approach, on the other hand, show almost similar results
requiring more regularly a few seconds to detect and react
to the presence of an attacking node.

4.5.3 Other Benefits of the Proposed Hybrid Ap-

proach

A synchronous embodiment of the proposed hybrid ap-
proach was depicted in Figure 4, in order to reflect the
lower cost induced by the threat detection management
phase (mailbox checking and required actions enforce-
ment) as compared with that of the election approach.
Beside this explanatory purpose, there is no need how-
ever to mandate synchronicity in our proposed solution:
the sensor nodes may very well wake up at different times;
the operation of the proposed approach would still work
exactly the same. We simulated this asynchronous ap-
proach by explicitly requiring each sensor node to wake up

at different times. We obtained equivalent performance
with respect to reactivity to attacks; on the other hand,
the resulting threat detection energy consumption curve
presented, as expected, a smoother aspect (Figure 8).

Obviously, the support by our proposed approach of
such asynchronicity (hence, of multiple sensor nodes that
are not in phase regarding their sleep/wake up periods)
could not be provided by the election approach, where
all nodes within a common cluster must be involved in a
synchronous way in the monitoring node election process.
This support of sleeping node represents an important
advantage of our proposed approach.

Finally, another benefit of our hybrid approach lies in
the fact that interactions with a server entity can be ex-
ploited to further improve the threat detection system,
by making it dynamically able to react to new threats.
Indeed, the orders from the threat detection server to its
clients could be extended to carry new attack signatures,
thereby making the system both more evolutive and more
in line with a given threat model. Simple extensions
to the threat detection system, in line with the adap-
tive security approach, could lead to dynamically choos-
ing which node(s) in a given cluster receive which attack
signature(s).

5 Conclusion

This paper presents a threat detection system for indus-
trial wireless sensor networks that could be qualified as
hybrid in that it involves a semi-centralized process. The
switch from normal threat detection mode to monitoring
mode is triggered by the threat detection server, which
bases on regular reports from nodes and updates its deci-
sion accordingly. We showed that this system, as reactive
as the most studied state of the art solutions with respect
to identifying threats, performs better from the viewpoint
of energy consumption, saving around 50% of energy. The
hybrid approach we propose, characterized by centralized
management and local instantiation of threat detection,
is also more flexible in terms of extension possibilities,
opening up interesting development axes for the future of
autonomous security in WSNs.
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