L. F. Abbott, J. A. Varela, K. Sen, and S. B. Nelson, Synaptic depression and cortical gain control, Science, vol.275, pp.221-224, 1997.

F. Alibart, S. Pleutin, O. Bichler, C. Gamrat, T. Serrano-gotarredona et al., A memristive nanoparticle/organic hybrid synapstor for neuroinspired computing, Adv. Funct. Mater, vol.22, pp.609-616, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00787366

F. Alibart, S. Pleutin, D. Guérin, C. Novembre, S. Lenfant et al., An organic nanoparticle transistor behaving as a biological spiking synapse, Adv. Funct. Mater, vol.19, pp.330-337, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00548959

I. G. Baek, M. S. Lee, S. Seo, M. J. Lee, D. H. Seo et al., Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses, 2004.

G. Bi and M. Poo, Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type, J. Neurosci, vol.18, pp.10464-10472, 1998.

G. Bi and M. Poo, Synaptic modification by correlated activity: Hebb's postulate revisited, Annu. Rev. Neurosci, vol.24, pp.139-166, 2001.

M. Bibes, J. Grollier, A. Barthélémy, and J. Mage, Ferroelectric Device with Adjustable Resistance. Patent WO, 2010.

O. Bichler, D. Querlioz, S. J. Thorpe, J. Bourgoin, and C. Gamrat, Extraction of temporally correlated features from dynamic vision sensors with spike-timing-dependent plasticity, Neural Netw, vol.32, pp.339-348, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00706681

O. Bichler, M. Suri, D. Querlioz, D. Vuillaume, B. Desalvo et al., Visual pattern extraction using energy-efficient "2-PCM synapse" neuromorphic architecture, IEEE Trans. Electron Devices, vol.59, pp.2206-2214, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00787385

T. V. Bliss and G. L. Collingridge, A synaptic model of memory: longterm potentiation in the hippocampus, Nature, vol.361, p.31, 1993.

M. Boegerhausen, P. Suter, and S. Liu, Modeling shortterm synaptic depression in silicon, Neural Comput, vol.15, pp.331-348, 2003.

S. Boyn, S. Girod, V. Garcia, S. Fusil, S. Xavier et al., Highperformance ferroelectric memory based on fully patterned tunnel junctions, Appl. Phys. Lett, vol.104, p.52909, 2014.

D. V. Buonomano and W. Maass, State-dependent computations: spatiotemporal processing in cortical networks, Nat. Rev. Neurosci, vol.10, pp.113-125, 2009.

K. D. Cantley, A. Subramaniam, H. J. Stiegler, R. A. Chapman, and E. M. Vogel, Hebbian learning in spiking neural networks with nanocrystalline silicon TFTs and memristive synapses, IEEE Trans. Nanotechnol, vol.5, p.1066, 2011.

S. Cassenaer, L. , and G. , Hebbian STDP in mushroom bodies facilitates the synchronous flow of olfactory information in locusts, Nature, vol.448, pp.709-713, 2007.

L. Cederstroem, P. Starke, C. Mayr, Y. Shuai, H. Schmidt et al., A model based comparison of BiFeO3 device applicability in neuromorphic hardware, IEEE Int. Symp. Circuits Syst, pp.2323-2326, 2013.

T. Chang, S. Jo, and W. Lu, Short term memory to long term memory transition in a nanoscale memristor, ACS Nano, vol.5, pp.7669-7676, 2011.

A. Chanthbouala, A. Crassous, V. Garcia, K. Bouzehouane, S. Fusil et al., Solid-state memories based on ferroelectric tunnel junctions, Nature Nano, vol.7, p.101, 2012.

A. Chanthbouala, V. Garcia, R. O. Cherifi, K. Bouzehouane, S. Fusil et al., A ferroelectric memristor, Nature Mater, vol.11, pp.860-864, 2012.

A. Chanthbouala, R. Matsumoto, J. Grollier, V. Cros, A. Anane et al., Vertical-current-induced domain-wall motion in MgO-based magnetic tunnel junctions with low current densities, Nat. Phys, vol.7, pp.626-630, 2011.

L. Chua, Memristor-missing circuit element, IEEE Trans. Circuit Theor, vol.18, pp.507-519, 1971.

L. Chua, If it's pinched it's a memristor, Semicond. Sci. Technol, vol.29, p.104001, 2014.

L. O. Chua and S. M. Kang, Memristive devices and systems, Proc. IEEE, vol.64, pp.209-223, 1976.

T. Devolder, J. Hayakawa, K. Ito, H. Takahashi, S. Ikeda et al., Single-shot time-resolved measurements of nanosecond-scale spintransfer induced switching: stochastic versus deterministic aspects, Phys. Rev. Lett, vol.100, p.57206, 2008.

Z. Diao, Z. Li, S. Wang, Y. Ding, A. Panchula et al., Spintransfer torque switching in magnetic tunnel junctions and spin-transfer torque random access memory, J. Phys. Condens. Matter, vol.19, p.165209, 2007.

H. Eisenreich, C. Mayr, S. Henker, M. Wickert, and R. Schüffny, A novel ADPLL design using successive approximation frequency control, Microelectron. J, vol.40, pp.1613-1622, 2009.

C. Eliasmith, A. , and C. C. , Neural Engineering: Computation, Representation, and Dynamics. Neurobiological Systems, 2004.

C. Eliasmith, T. C. Stewart, X. Choo, T. Bekolay, T. Dewolf et al., A large-scale model of the functioning brain, Science, vol.338, pp.1202-1205, 2012.

A. Fantini, V. Sousa, L. Perniola, E. Gourvest, J. C. Bastien et al., N-doped GeTe as performance booster for embedded phasechange memories, International Electron Devices Meeting, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00625213

D. Feldman, Timing-based LTP and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex, Neuron, vol.27, pp.8-8, 2000.

J. Fieres, J. Schemmel, and K. Meier, Realizing biological spiking network models in a configurable wafer-scale hardware system, IEEE International Joint Conference Neural Network, pp.969-976, 2008.

L. A. Finelli, S. Haney, M. Bazhenov, M. Stopfer, and T. J. Sejnowski, Synaptic learning rules and sparse coding in a model sensory system, PLoS Comput. Biol, vol.4, p.1000062, 2008.

A. Flocke and T. G. Noll, Fundamental analysis of resistive nanocrossbars for the use in hybrid nano/cmos-memory, Proceedings of 33rd ESSCIRC, pp.328-331, 2007.

R. Froemke, D. , and Y. , Spike-timing-dependent synaptic modification induced by natural spike trains, Nature, vol.416, pp.433-438, 2002.

A. Fukushima, T. Seki, K. Yakushiji, H. Kubota, H. Imamura et al., Spin dice: a scalable truly random number generator based on spintronics, Appl. Phys. Express, vol.7, p.83001, 2014.

V. Garcia, S. Fusil, K. Bouzehouane, S. Enouz-vedrenne, N. D. Mathur et al., Giant tunnel electroresistance for non-destructive readout of ferroelectric states, Nature, vol.460, pp.81-84, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02347661

W. Gerstner, R. Kempter, J. Leo-van-hemmen, and H. Wagner, A neuronal learning rule for sub-millisecond temporal coding, Lett. Nat, vol.383, pp.76-78, 1996.

W. Gerstner, R. Ritz, and J. L. Hemmen, Why spikes? Hebbian learning and retrieval of time-resolved excitation patterns, Biol. Cybern, vol.69, pp.503-515, 1993.

D. H. Goldberg, G. Cauwenberghs, and A. G. Andreou, Probabilistic synaptic weighting in a reconfigurable network of VLSI integrate-andfire neurons, Neural Netw, vol.14, pp.781-793, 2001.

D. O. Hebb, The Organization of Behavior, 1949.

S. Henker, C. Mayr, J. Schlüssler, R. Schüffny, U. Ramacher et al., Active pixel sensor arrays in 90/65nm CMOS-technologies with vertically stacked photodiodes, Proceedings if IEEE International Image Sensor Workshop, pp.16-19, 2007.

G. Indiveri, E. Chicca, D. , and R. , A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity, IEEE Trans. Neural Netw, vol.17, pp.211-221, 2006.

, Emerging Research Devices, International Technology Roadmap For Semiconductors (ITRS), 2011.

V. Jacob, D. J. Brasier, I. Erchova, D. Feldman, and D. E. Shulz, Spiketiming-dependent synaptic depression in the in vivo barrel cortex of the rat, J. Neurosci, vol.27, pp.1271-1284, 2007.

D. S. Jeong, I. Kim, M. Ziegler, and H. Kohlstedt, Towards artificial neurons and synapses: a materials point of view, RSC Adv, vol.3, p.3169, 2013.

S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder et al., Nanoscale memristor device as synapse in neuromorphic systems, Nano Lett, vol.10, pp.1297-1301, 2010.

E. E. Josberger, Y. Deng, W. Sun, R. Kautz, and M. Rolandi, Two terminal protonic devices with synaptic like short term depression and device memory, Adv. Mater, vol.26, pp.4986-4990, 2014.

A. Joubert, B. Belhadj, O. Temam, and R. Heliot, Hardware spiking neurons design: analog or digital, in International Joint Conference Neural Network, pp.1-5, 2012.

O. Kavehei, Highly scalable neuromorphic hardware with 1-bit stochastic nano-synapses, IEEE Int. Symp. Circuits Syst, pp.1648-1651, 2013.

A. Kawahara, R. Azuma, Y. Ikeda, K. Kawai, Y. Katoh et al., An 8Mb multi-layered cross-point ReRAM macro with 443MB/s write throughput, IEEE International Solid-State Circuits Conference, 2012.

M. Khan, D. Lester, L. Plana, A. Rast, X. Jin et al., Spinnaker: mapping neural networks onto a massively-parallel chip multiprocessor, IEEE International Joint Conference Neural Network, pp.2849-2856, 2008.

V. Kornijcuk, O. Kavehei, H. Lim, J. Y. Seok, S. K. Kim et al., Multiprotocol-induced plasticity in artificial synapses, Nanoscale, vol.6, pp.15151-15160, 2014.

D. Kuzum, R. G. Jeyasingh, B. Lee, and H. P. Wong, Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing, Nanoletters, vol.12, pp.2179-2186, 2012.

D. Kuzum, S. Yu, and H. P. Wong, Synaptic electronics: materials, devices and applications, Nanotechnology, vol.24, p.382001, 2013.

R. Lamprecht and J. Ledoux, Structural plasticity and memory, Nat. Rev. Neurosci, vol.5, pp.45-54, 2004.

C. N. Lau, D. R. Stewart, R. S. Williams, and M. Bockrath, Direct observation of nanoscale switching centers in metal/molecule/metal structures, Nano Lett, vol.4, pp.569-572, 2004.

H. Y. Lee, P. S. Chen, T. Y. Wu, Y. S. Chen, C. C. Wang et al., Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM, Technology Digital IEEE International Electron Devices Meeting, pp.1-4, 2008.

H. Lim, I. Kim, J. Kim, C. S. Hwang, and D. S. Jeong, Short term memory of TiO2 based electrochemical capacitors: empirical analysis with adoption of a sliding threshold, Nanotechnology, vol.24, p.384005, 2013.

B. Linares-barranco and T. Serrano-gotarredona, Exploiting memristance in adaptive asynchronous spiking neuromorphic nanotechnology systems, 9th IEEE Conference Nanotechnology, pp.601-604, 2009.

B. Linares-barranco and T. Serrano-gotarredona, Memristance can explain spike-time-dependent-plasticity in neural synapses, Nat. Proc. NPRE, 2009.

E. Linn, R. Rosezin, C. Kügeler, and R. Waser, Complementary resistive switches for passive nanocrossbar memories, Nat. Mater, vol.9, pp.403-406, 2010.

T. Liu, T. H. Yan, R. Scheuerlein, Y. Chen, J. K. Lee et al., A 130.7 mm 2 2-layer 32Gb ReRAM memory device in 24nm technology, State Circuits Conf. 432-434, pp.210-212, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02129984

P. Livi and G. Indiveri, A current-mode conductance-based silicon neuron for address-event neuromorphic systems, Int. Symp. Circuits Syst, pp.2898-2901, 2009.

X. Lou, Z. Gao, D. V. Dimitrov, and M. X. Tang, Demonstration of multilevel cell spin transfer switching in MgO magnetic tunnel junctions, Appl. Phys. Lett, vol.93, p.242502, 2008.

M. Marins-de-castro, R. C. Sousa, S. Bandiera, C. Ducruet, A. Chavent et al., Precessional spin-transfer switching in a magnetic tunnel junction with a synthetic antiferromagnetic perpendicular polarizer, J. Appl. Phys, vol.111, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02023419

H. Markram, J. Lübke, M. Frotscher, and B. Sakmann, Regulation of synaptic efficacy by coincidence of postsynaptic APS and EPSPS, Science, vol.275, pp.213-215, 1997.

T. Masquelier, R. Guyonneau, and S. J. Thorpe, Spike timing dependent plasticity finds the start of repeating patterns in continuous spike trains, PLoS ONE, vol.3, p.1377, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00229791

T. Masquelier, R. Guyonneau, and S. J. Thorpe, Competitive STDP-based spike pattern learning, Neural Comp, vol.21, pp.1259-1276, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00383703

C. Mayr, M. Ehrlich, S. Henker, K. Wendt, and R. Schüffny, Mapping complex, large scale spiking networks on neural VLSI, Int. J. Appl. Sci. Eng. Technol, vol.4, pp.37-42, 2007.

C. Mayr, M. Noack, J. Partzsch, and R. Schüffny, Replicating experimental spike and rate based neural learning in CMOS, IEEE Int. Symp. Circuits Systems, pp.105-108, 2010.

C. Mayr and J. Partzsch, Rate and pulse based plasticity governed by local synaptic state variables, Front. Synaptic Neurosci, vol.2, p.33, 2010.

C. Mayr, J. Partzsch, M. Noack, S. Hänzsche, S. Scholze et al., A biological real time neuromorphic system in 28nm CMOS using low leakage switched capacitor circuits, Trans. Biomed. Circuits Syst, 2014.

C. Mayr, J. Partzsch, M. Noack, and R. Schüffny, Configurable analogdigital conversion using the neural engineering framework, Front. Neurosci, vol.8, p.201, 2014.

C. Mayr, P. Stärke, J. Partzsch, L. Cederstroem, R. Schüffny et al., Waveform driven plasticity in BiFeO3 memristive devices: model and implementation, Adv. Neural Inf. Process. Syst, vol.25, pp.1700-1708, 2012.

P. Merolla, J. Arthur, F. Akopyan, N. Imam, R. Manohar et al., A digital neurosynaptic core using embedded crossbar memory with 45pJ per spike in 45 nm, Custom Integrative Circuits Conference, pp.1-4, 2011.

Y. Mu and M. M. Poo, Spike timing-dependent LTP/LTD mediates visual experience-dependent plasticity in a developing retinotectal system, Neuron, vol.50, pp.115-125, 2006.

B. Nessler, M. Pfeiffer, L. Buesing, and W. Maass, Bayesian computation emerges in generic cortical microcircuits through spike-timing-dependent plasticity, PLoS Comput. Biol, vol.9, p.1003037, 2013.

M. Noack, J. Partzsch, C. Mayr, and R. Schüffny, Biology-derived synaptic dynamics and optimized system architecture for neuromorphic hardware, 17th International Conference on Mixed Design of Integrated Circuits and Systems, pp.219-224, 2010.

T. Ohno, T. Hasegawa, T. Tsuruoka, K. Terabe, J. K. Gimzewski et al., Short term plasticity and long term potentiation mimicked in single inorganic synapses, Nat. Mater, vol.10, pp.591-595, 2011.

Y. V. Pershin, D. Ventra, and M. , Spin memristive systems: spin memory effects in semiconductor spintronics, Phys. Rev. B, vol.78, p.113309, 2008.

D. Querlioz, O. Bichler, P. Dollfus, and C. Gamrat, Immunity to device variations in a spiking neural network with memristive nanodevices, IEEE Trans. Nanotechnol, vol.12, pp.288-295, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01826840

D. Querlioz, P. Dollfus, O. Bichler, and C. Gamrat, Learning with memristive devices: how should we model their behavior, 7th IEEE/ACM International Symposium on Nanoscale Architectures, pp.150-156, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01827056

V. Rangan, A. Ghosh, V. Aparin, and G. Cauwenberghs, A subthreshold aVLSI implementation of the Izhikevich simple neuron model, Conf. Proc. IEEE Eng. Med. Biol. Soc, pp.4164-4167, 2010.

Y. Shuai, X. Ou, W. Luo, N. Du, C. Wu et al., Nonvolatile multilevel resistive switching in Ar+ irradiated BiFeO3 thin films, IEEE Electron Device Lett, vol.34, pp.54-56, 2013.

Y. Shuai, S. Zhou, C. Wu, W. Zhang, D. Bürger et al., Control of rectifying and resistive switching behavior in bifeo3 thin films, Appl. Phys. Express, vol.4, p.95802, 2011.

J. Sjöström and W. Gerstner, Spike-timing dependent plasticity, vol.5, p.1362, 2010.

G. S. Snider, Spike-timing-dependent learning in memristive nanodevices, IEEE International Symposium Nano Architecture, pp.85-92, 2008.

D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, The missing memristor found, Nature, vol.453, pp.80-83, 2008.

M. Suri, D. Querlioz, O. Bichler, G. Palma, E. Vianello et al., Bio-inspired stochastic computing using binary CBRAM synapses, IEEE Trans. Electron Devices, vol.60, pp.2402-2409, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00871918

H. M. Upadhyaya, C. , and S. , Polarity dependent memory switching behavior in Ti/Cd Pb S/Ag system, Semicond. Sci. Technol, vol.10, pp.332-338, 1995.

J. Varela, K. Sen, J. Gibson, J. Fost, L. F. Abbott et al., A quantitative description of short term plasticity at excitatory synapses in layer 2/3 of rat visual cortex, J. Neurosci, vol.17, pp.7926-7940, 1997.

A. F. Vincent, N. Locatelli, W. S. Zhao, J. Klein, S. Galdin-retailleau et al., Analytical macrospin modeling of the stochastic switching time of spin transfer-torque magnetic tunnel junctions, IEEE Trans. Electron Devices, vol.62, pp.164-170, 2015.

A. Vincent, J. Larroque, W. S. Zhao, N. Ben-romdhane, O. Bichler et al., Spin-transfer torque magnetic memory as a stochastic memristive synapse, IEEE International Symposium Circuits System, pp.1074-1077, 2014.
URL : https://hal.archives-ouvertes.fr/cea-01817867

X. Wang, Y. Chen, H. Xi, H. Li, and D. Dimitrov, Spintronic memristor through spin-torque-induced magnetization motion, IEEE Electron Device Lett, vol.30, pp.294-297, 2009.

R. Waser, A. , and M. , Nanoionics-based resistive switching memories, Nat. Mater, vol.6, pp.833-840, 2007.

J. Wijekoon and P. Dudek, Compact silicon neuron circuit with spiking and bursting behavior, Neural Netw, vol.21, pp.524-534, 2008.

H. P. Wong, H. Lee, S. Yu, Y. Chen, Y. Wu et al., Metal oxide RRAM. Proc. IEEE, vol.100, pp.1951-1970, 2012.

X. Wu, P. Zhou, J. Li, L. Y. Chen, H. B. Lu et al., Reproducible unipolar resistance switching in stoichiometric ZrO2 films, Appl. Phys. Lett, vol.90, p.183507, 2007.

H. Yamada, V. Garcia, S. Fusil, S. Boyn, M. Marinova et al., Giant electroresistance of super-tetragonal BiFeO3-based ferroelectric tunnel junctions, ACS Nano, vol.7, pp.5385-5390, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02509417

R. Yang, K. Terabe, Y. Yao, T. Tsuruoka, T. Hasegawa et al., Synaptic plasticity and memory functions achieved in a WO3-x based nanoionics device by using the principle of atomic switch operation, Nanotechnology, vol.24, p.384003, 2013.

T. You, N. Du, S. Slesazeck, T. Mikolajick, G. Li et al., Bipolar electric-field enhanced trapping and detrapping of mobile donors in BiFeO 3 memristors, ACS Appl Mater Interfaces, vol.6, 2014.

J. M. Young, Cortical reorganization consistent with spike timingbut not correlation-dependent plasticity, Nat. Neurosci, vol.10, pp.887-895, 2007.

S. Yu, B. Gao, Z. Fang, H. Yu, J. Kang et al., Stochastic learning in oxide binary synaptic device for neuromorphic computing, Front. Neurosci, vol.7, p.186, 2013.

C. Zamarreño-ramos, L. A. Camuñas-mesa, J. A. Pérez-carrasco, T. Masquelier, T. Serrano-gotarredona et al., On spike-timingdependentplasticity, memristive devices, and building a self-learning visual cortex, Front. Neurosci, vol.5, p.26, 2011.

L. Zhang, H. Tao, C. Holt, W. Harris, and M. Poo, A critical window for cooperation and competition among developing retinotectal synapses, Nature, vol.395, pp.37-44, 1998.

Y. Zhang, W. Zhao, J. Klein, W. Kang, D. Querlioz et al., Spintronics for low-power computing, Design, Automation and Test in Europe Conference and Exhibition, pp.1-6, 2014.

, Conflict of Interest Statement: The authors declare that the research was con