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Simulation of ultrasonic Non Destructive Testing (NDT) is helpful for evaluating performances of inspec-

tion techniques and requires the modelling of waves scattered by defects. Two classical flaw scattering

models have been previously usually employed and evaluated to deal with inspection of planar defects,

the Kirchhoff approximation (KA) for simulating reflection and the Geometrical Theory of Diffraction

(GTD) for simulating diffraction. Combining them so as to retain advantages of both, the Physical

Theory of Diffraction (PTD) initially developed in electromagnetism has been recently extended to elas-

todynamics. In this paper a PTD-based system model is proposed for simulating the ultrasonic response

of crack-like defects. It is also extended to provide good description of regions surrounding critical rays

where the shear diffracted waves and head waves interfere. Both numerical and experimental validation

of the PTD model is carried out in various practical NDT configurations, such as pulse echo and Time of

Flight Diffraction (TOFD), involving both crack tip and corner echoes. Numerical validation involves com-

parison of this model with KA and GTD as well as the Finite-Element Method (FEM).

1. Introduction

Classical ultrasonic inspection methods, pulse echo, tandem and

Time of Flight Diffraction (TOFD) allow one to detect cracks by

interpreting their specular or diffraction echoes. In Non Destructive

Testing modelling nowadays plays an important role in assessing

detection capability and conceiving inspections. System models

have been developed to predict results of ultrasonic inspection in

a range of applications [1,2]. These models simulate the propa-

gated beam as well as its interaction with the flaws and reception

by the probe of the waves scattered by the flaws.

Two classical semi-analytical scattering models are used in the

literature to simulate interaction with cracks: the Kirchhoff

approximation (KA) [3] and Geometrical Theory of Diffraction

(GTD) [4]. They are based on different approximations and have

complementary regions of validity. KA relies on an integral over

the flaw surface of the product of the Geometrico-Elastodynamic

(GE) field and the free space Green’s function. It is used to deal with

reflections from planar-like cracks (maybe, containing several pla-

nar facets) as well as volumetric voids, such as spherical or hemi-

spherical holes and Side Drilled Holes (SDH) [5]. The corresponding

inspection model requires the meshing of defect surface. KA is par-

ticularly suitable for simulating direct reflection from flaws as well

as corner effects [1,3]. KA can also deal with anisotropy [6] and

impedance (non-rigid) interfaces [7]. GTD is suitable for simulating

scattering by crack edges, away from specular angles and forward

paths. The corresponding model requires the meshing of the flaw

edge. Unlike GTD, KA does not model edge diffraction correctly

and unlike KA, GTD is not suitable for describing reflections. More-

over, the GTD coefficients diverge near incident and reflection sha-

dow boundaries.

Chapman [3] has presented the first complete system model,

which could use either KA or GTD to simulate the ultrasonic

response of a planar crack in an isotropic material but it had been

limited to 2D configurations, in which the crack is perpendicular to

the incident plane. KA models have been then extended to 3D [1,5].

Several GTD-based system models [8,9] have been developed for

2D configurations, particularly TOFD, in which cracks are detected

using their edge diffracted echoes. The system model [10] is the

only GTD-based model to deal with 3D CAD-defects and 3D inspec-

tion configurations.

Choosing between models based on KA or GTD requires exper-

tise. Therefore, development of a generic model that can account

for both reflection and edge diffraction is of great interest in NDT

applications. Recently an original 2D approach based on the
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Huygens–Fresnel diffraction theory has been proposed [11] for

evaluating the edge diffracted signal in TOFD configuration. The

model uses both the monochromatic far field expressions derived

by Miller and Pursey [12] and reciprocity principle. The amplitude

of diffracted wave behind a vertical crack is obtained by summing

up contributions of virtual elementary sources (situated on a vir-

tual flaw), which are located inside the specimen section outside

the crack. Since the Miller and Pursey’s solution describes the GE

Green’s function of the 2D Lamb problem (the linear source located

on the free surface of a semi-infinite elastic medium), the proposed

method is equivalent (as shown in [13]) to applying KA over the

virtual flaw. Due to this equivalence, the Huygens–Fresnel model

is likely to lead to significant prediction errors in diffracted shear

waves (see Section 3.2). To account for reflection, the Huygens–

Fresnel model [11] has to be modified to sum up virtual sources

on the real scatterer as done in [11] for computing the component

backwall echo. This method [11] also seems to be able to deal with

the incident shadow boundary, as illustrated by simulation results

presented in Fig. 6 in [11]. This figure cannot correspond to the

TOFD configuration for a planar component described in Fig. 5 of

[11], since in this configuration the incident wave cannot reach

the receiver and the incident shadow boundary cannot be located

at the observation angle of 45� as Fig. 6 suggests. The method [11]

is also restricted by being applicable only in TOFD and 2D configu-

rations and since it relies on the Miller and Pursey’s solution, it

cannot describe scattered head waves or regions surrounding crit-

ical rays [14,15].

In this paper an ultrasonic system model is proposed, account-

ing for both reflection and diffraction, for 3D crack-like flaws in 3D

configurations. It is based on the Physical Theory of Diffraction

(PTD). PTD is a scattering model which was initially developed in

electromagnetism [16] and which overcomes the limitations of

both KA and GTD so that the resulting scattered field is spatially

uniform. PTD has recently been extended to elastodynamics in

[17]. Elastodynamic PTD is incorporated here in the generic ultra-

sonic system model of the CIVA software package [18]. This article

describes this PTD-based system model and shows its prediction

capabilities for 3D crack-like defects. Additionally, the region of

the PTD model’s validity is extended in this paper to cover transi-

tion zones surrounding critical rays where the shear diffracted

waves and head waves interfere.

The paper is organized as follows: the developed system model

based on PTD is presented in Section 2. It is shown that it relies on

a generic reciprocity-based measurement model used in CIVA.

Then the PTD-based system model is described first for the semi-

infinite crack, then extended for a finite crack and then its exten-

sions are discussed to regions surrounding the critical rays. Numer-

ical validation of the model is discussed in Section 3 and

experimental validation, in Section 4 for both pulse echo and TOFD

configurations. Conclusions are presented in Section 5.

2. Theory: modelling of scattering by cracks using a PTD based

system model

In this section, the developed system model based on PTD is

presented. It is based on a generic reciprocity-based measurement

model included in CIVA software which allows to account for both

radiation from the emitting transducer and propagation of the

radiated beam, scattering from flaws and reception of the scattered

waves by the receiving transducer. PTD, which simulates only scat-

tering from crack-like flaws, is incorporated into this CIVA generic

measurement model to completely simulate an ultrasonic inspec-

tion of such defects. The elastodynamic PTD scattering model is

then presented for a semi-infinite crack and its extension to a flaw

of finite extent is shown afterwards. Some improvements of the

model near critical observation angles are also proposed for shear

scattered waves.

2.1. A generic reciprocity-based measurement model

The developed model relies on a generic system model [2],

based on the reciprocity principle, which is employed in the CIVA

software package [18]. CIVA is an expertise platform, developed

by CEA–LIST and partners, for NDT simulation [19] and processing

NDT data; its generic platform [20] allows to gather and add in the

same software modelling tools of different nature and to compare

their simulation results for a numerical validation purpose. The

CIVA generic ultrasonic inspection model can be decomposed into

three main modelling steps, the radiated beam model, the flaw

scattering and the reception accounted by reciprocity [2].

The beam model is based on a semi-analytical method, which

calculates the impulse response of the transmitting probe, assum-

ing elementary sources distributed over the radiating surface. For

each observation point, the contribution of each elementary source

is then evaluated using an elastodynamic version of the pencil

method [21]. This model can be used to compute the ultrasonic

field inside a component radiated by probes of arbitrary shape,

whether wedge coupled or immersed, whether monolithic or

phased-arrays. Initially developed for homogeneous and isotropic

materials, it has been extended to deal with anisotropic and

heterogeneous media as well [22].

Depending on the nature of the flaw, different approaches are

used in CIVA to model its interaction with the beam. Three classical

scattering models are used, analytical approximations (such as the

modified Born approximation for solid inclusions [23]), exact ana-

lytical solutions (such as the ones obtained for cylindrical or spher-

ical cavities using the separation of variables method –SOV– [5])

and numerical solutions (such as the hybrid CIVA–ATHENA

scheme, which relies on the finite elements method around the

flaw). Crack echoes can be simulated until now using semi-

analytical models, such as KA [5] and GTD [10], or CIVA–ATHENA

[24]. The latter relies on the pencil method [21] to simulate most

of the propagation, while intricate interaction phenomena taking

place in a small region surrounding the defects are computed using

a FEM code ATHENA, developed at Electricité de France (EDF) in

collaboration with the French National Institute for Research in

Computer Science and Control (INRIA). In the system model pro-

posed here, the flaw scattering from cracks is modelled using PTD.

The CIVA reciprocity-based measurement model and its abili-

ties are described in more details in [2]. In order to avoid the elec-

troacoustic transduction modelling, it requires as a modelling

input the definition of a reference signal obtained by a calibration

measurement on a reference flaw. Thanks to this calibration, the

entire bandwidth of the transducers is taken into account in the

echo calculations.

2.2. Integration in CIVA of analytical scattering models (among them

PTD)

The different scattering models that were available in CIVA

before the integration of PTD are listed in the previous section.

As shown in [2], CIVA can employ different scattering models,

the used scattering model being interchangeable. One advantage

of the PTD model implementation is that it re-uses existing codes

from the Kirchhoff and GTD models.

When integrating an analytical scattering model, two approxi-

mations or hypotheses are made [2]. The first one is the ‘‘local

plane wave approximation” of the incident beam. The incident

wave-field calculated by the CIVA beam model is approximated

on each point of the flaw mesh by a local plane wave. The wave

vector and polarization of this local plane wave as well as its
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amplitude are extracted from the CIVA beam calculation based on

the pencil method. Consequently at each flaw meshed point,

although the CIVA beam model accounts for all incident beam

directions, only an average beam direction is involved for calculat-

ing the flaw scattering using the CIVA analytical scattering models.

This approximation is usually valid in far field of the emitter or in

its focal area if it is focused.

The second hypothesis is that the waves scattered from the

mesh flaw points are spherical waves. It is the case for Kirchhoff

approximation and also for GTD on finite flaws when coupling it

to the Huygens’ incremental method (described in Section 2.3);

consequently, it is also the case for PTD which mixes Kirchhoff

and GTD (see next section).

2.3. The PTD based system model for a half-plane crack

As explained in the Introduction, choosing between KA and GTD

requires expertise. Moreover, in some configurations, neither

model is entirely satisfactory. The PTD-based system model devel-

oped below overcomes the limitations of both. Indeed, in the PTD

formalism [17], the Kirchhoff scattered field uKAðxÞ is evaluated

in the far field using the leading order asymptotics. In this approx-

imation the Kirchhoff scattered field is decomposed into two com-

ponents, a geometrical (reflected) field and KA edge diffracted field.

In this section, for simplicity, the scatterer is as in [4], a semi-

infinite half-plane crack (with only one straight edge). In the elas-

todynamic version of PTD developed in [17] all scatteredmodes are

taken into account, including mode conversions on the flaw. The

Kirchhoff diffraction displacement field at an observation point x

has the same form as the GTD field but a different edge diffraction

coefficient DKA
ab [17],

uKAðdiffÞðxÞ ¼
X

b

DKA
ab ðxÞ

eikbr
ffiffiffiffiffiffiffiffiffi

kbLb
p db; ð1Þ

where a is the incident mode P, SV or SH and b is the scattered

mode P, SV or SH; k is the scattered wave number; and r is the dis-

tance from the edge to the observation point along the diffracted

ray on the classical Keller cone [4]. The diffraction coefficient char-

acterizes the directivity of the Kirchhoff edge diffraction

contribution.

PTD [17] corrects the Kirchhoff edge diffraction field using GTD,

which is the leading order asymptotics of the exact solution of the

canonical scattering problem from a half-plane:

uPTDðxÞ ¼ uKAðxÞ þ
X

b

DGTD
ab ðxÞ � DKA

ab ðxÞ
h i eikbr

ffiffiffiffiffiffiffiffiffi

kbLb
p db: ð2Þ

Consequently, the PTD scattered field is the sum of the original

Kirchhoff scattered field (involving no far field approximation) and

a modified GTD field, in which the classical GTD coefficient DGTD
ab ðxÞ

[4] is replaced by the difference DGTD
ab ðxÞ � DKA

ab ðxÞ. Similarly to KA,

the total PTD field is the sum of the incident field and PTD scattered

field.

In the specular direction, KA scattered field uKAðxÞ is finite and

provides a good description of reflection. The KA diffraction coeffi-

cient DKA
ab ðxÞ (obtained using the far field approximation of the KA

field) diverges in the same manner as the GTD edge diffraction

coefficient DGTD
ab ðxÞ. In DGTD

ab ðxÞ � DKA
ab ðxÞ the two singularities cancel

and therefore this difference is finite. Consequently, the PTD field is

spatially uniform and unlike GTD, has no singularity at the specular

angles. The reasoning applies to the incident shadow boundary too

and in that case, the KA describes the compensating field which

cancels the incident field in its shadow zone.

Near specular observation angles, the KA scattered field domi-

nates and therefore

uPTDðxÞ � uKAðxÞ ð3Þ

Away from the specular observation angles, the edge diffraction

effects dominate and therefore

uKAðxÞ �
X

b

DKA
ab ðxÞ

eikbr
ffiffiffiffiffiffiffiffiffi

kbLb
p db and uPTDðxÞ

�
X

b

DGTD
ab ðxÞ

eikbr
ffiffiffiffiffiffiffiffiffi

kbLb
p db ¼ uGTDðxÞ: ð4Þ

2.4. The PTD based system model for a finite size crack

In the previous section, the PTD model has been described for

the case of a semi-infinite stress-free half-plane crack. The elasto-

dynamic GTD is well-established for such a canonical flaw [4]. In

the following the application to a finite size crack is shown.

The implementation of PTD requires calculating the sum of the

two terms involved in (2). The first term, corresponding to the

Kirchhoff scattered field, is computed for a finite crack by meshing

its illuminated parts and evaluating the Kirchhoff surface integral

over these parts numerically. On each meshed elementary planar

surface, the classical tangent plane Kirchhoff approximation is

applied.

The second term of (2) is a modified GTD diffraction field. A

finite size crack has a contour constituted of edges of finite size.

However, GTD provides a solution to diffraction from canonical

geometries like a stress-free half-plane having an infinite edge.

Incremental models have been developed before in elastodynamics

[25] in order to take into consideration the finite extent of the edge

and validated experimentally [25]. One previously developed

incremental model, the method based on the Huygens’s principle

[25] is used here. The formula (2) (involving a cylindrical or conical

diffracted wave from an infinite edge) can be extended to a finite

crack by summing the contributions of spherical waves along the

crack contour, locally approximated by a straight edge. The finite

flaw contour is thus approximated and meshed into straight por-

tions which, following the Huygens’s method [25], scatter a spher-

ical wave whose directivity is proportional to the GTD coefficient of

the infinite half-plane extending the current straight portion.

Finally the PTD computation for a finite flaw requires an inte-

gration on its illuminated surface for its Kirchhoff term and inte-

gration on its contour for its GTD modified term.

The integrated PTD model uses a specific recipe for multi-

faceted or branched flaws. Such flaws have two kinds of edges:

edges at free extremities which can be modelled as a half-plane

edges, and edges at internal junctions between branches which

are wedge edges. In the CIVA-integrated PTD model, only the

diffraction echoes from the flaw free edges are calculated using

the PTD scattering model; echoes from internal junctions of

branched facets are not since they cannot be approached by half-

planes and since the proposed PTDmodel is based on the GTD solu-

tion for a half-plane. Therefore in the CIVA-integrated PTD model,

internal junctions echoes are calculated by Kirchhoff. This

approach could be improved by implementing solutions of canon-

ical problems of wedge diffraction to calculate junction echoes.

The proposed system model has been extended to deal with

multiple rebounds on the component surfaces as well as mode

conversions.

2.5. PTD extensions

When simulating diffracted shear waves all approximations

described above break down around critical rays, which separate
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regions supporting the head waves from the corresponding sha-

dow zones. This is because none of them model the head waves

correctly (see Section 3.1.2): KA does not model them, because it

is based on the GE approximation of the surface field and in GE

the head waves do not arise. GTD and therefore standard PTD fail

too, because they model the critical zones well only in the very

far field [26,27]. We propose two recipes to improve the PTD per-

formance near the critical observation angles. These recipes consist

in modifying the PTD model only at the vicinity of critical angles.

Far from critical angles, they are identical to the PTD model.

The first recipe is based on the use of a mixed analytical and

numerical model [26,27] called PTD/Simpson. In [26,27], a modi-

fied Simpson’s method has been developed to calculate numeri-

cally the exact integral solution of the canonical half-plane

scattering problem [26,27]. The PTD/Simpson model operates as

follows: when the stationary and branch points of the exact inte-

gral coalesce, that is, when edge diffracted waves and head waves

interfere, the mixed PTD/Simpson model utilizes the modified

Simpson’s method, relying on the classical PTD otherwise.

The second recipe simply smoothes the GTD diffraction coeffi-

cients. To be precise, in the vicinity of the critical angle the magni-

tude of the GTD coefficient is interpolated linearly, while its phase

is smoothed using the following smoothed Heaviside function:

HsmoothðxÞ ¼ 0 if x < �h;

HsmoothðxÞ ¼ 0:5 � ð1þ x=hþ sinðpi � x=hÞ=piÞ if jxj < h;

HsmoothðxÞ ¼ 1 if x > h:

ð5Þ

where h is chosen equal to 10�. It has been established by trial and

error that this value of h is a satisfactory compromise, affecting the

value of the coefficient on a small range of observation angles while

allowing it to vary smoothly as a function of the observation angle.

3. Numerical validation

Numerical validation of the proposed models has been per-

formed by comparing them with various known models in both

pulse echo configuration and TOFD configuration in ferritic steel

components. The hybrid CIVA/ATHENA [24] model has been used

as a reference. It allows one to simulate the 2D response of SDHs

and cracks (rectangular, 2D CAD, multifaceted and branched) by

using both analytical models and finite elements simulations near

the defects. The principle of this technique is the following. A 2D

domain in the specimen is defined, embedding the defects. The

field reaching the domain entry is calculated by the analytical CIVA

pencil method on the domain border. Then the field is propagated

in the defined domain by the finite elements scheme ATHENA

which accounts for the beam to flaw interaction. The FEM domain

includes the flaws whose geometry is accounted in an optimized

way (notably for complex-shaped defects) by the ATHENA FEM

codes using the fictitious domains method [24,28,29]. The extent

of the FEM domain is chosen so that its boundary are enough far

from the defects (at least at one wavelength) to take into account

correctly the radiation of surface and head waves from the flaws.

The time and spatial steps of the numerical scheme are linked by

the Courant–Friedrichs–Lewy (CFL) condition with a CFL number

equal to 1. The steps of the spatial discretization are chosen to

ensure at least 13 mesh points per wavelength of the slowest shear

wave at the highest frequency of the signal.

In this section, we intend to validate the PTD models. In a GTD

or PTD solution, a semi-infinite half-plane is considered and the

crack faces are assumed to be stress-free and non-interacting, i.e.

the crack remains open under the influence of the incident wave

(see [30]). The crack is supposed consequently to have at his edges

an aperture which is quasi-null (but not null to avoid interaction of

its faces). The crack is consequently modelled as infinitely narrow

at his edges in FEM calculations in order to reproduce the PTD

assumptions, for numerical validation purposes. If the crack has a

thin aperture at one edge, GTD and PTD are not theoretically appli-

cable but the coupling code CIVA/ATHENA 2D allows taking into

account the real edge aperture and has been shown to lead to a

good agreement with experiments in TOFD configurations [31].

In the following, FEM refers to the hybrid code CIVA/ATHENA.

3.1. Pulse echo configuration

3.1.1. SV waves

The first typical pulse echo configuration studied is presented in

Fig. 1a. It involves SV45� waves at 5 MHz and 5 mm high defects of

an arbitrary tilt angle a. A 12.7 mm diameter probe is used in

immersion with a 20 mm water path. A defect is located inside

the area of maximum field amplitude, which corresponds to depths

between 33 mm and 40 mm.

In Fig. 2, GTD, KA and PTD are used to simulate the echo ampli-

tude (in dB) as a function of the tilt angle a. The tilt angle is mea-

sured with respect to the vertical direction. The results illustrate

the unifying nature of the system model based on PTD. Indeed,

when the probe detects the signal reflected by the flaw (around

a = �45 �in Fig. 1b, also see the yellow1 area in Fig. 2), GTD is invalid

but KA produces good quality results. The system model based on

PTD produces the same results as the model based on KA. When

the probe detects the diffracted signal (see the grey areas in

Fig. 2), KA does not perform very well. To give one example, in the

classical case of a vertical flaw inspected with the S45� wave (for

a = 0�, see Fig. 1c), the KA error compared to FEM is 5 dB (see

Fig. 3). By contrast, GTD performs effective. In the grey areas, PTD

gives the same results as GTD.

In Fig. 3, the configuration is the same as in Fig. 2, but the out-

put of the 2D FEM CIVA/ATHENA code is added for additional com-

parison. The simulated amplitudes shown in Fig. 3a are absolute

(not in dBs as in Fig. 2) and Fig. 3b zooms in on small amplitudes

in Fig. 3a. Fig. 3a demonstrates a perfect agreement between PTD

and FEM in the region around a = �45�, where the scatter is near

specular and therefore the signal received by the probe is due to

the reflected echo. When the received signal is due to a diffracted

S wave the predictions of the model based on PTD model can lead

to some prediction errors in diffraction compared to the model

based on FEM (Fig. 3b). Indeed, above the critical angle the FEM

curve oscillates due to interference between the head wave (see

Fig. 4 below) and the S? S diffracted wave. The PTD based model

does not account for this interference. This oscillation behaviour is

manifest in steel for the observation angles greater than the critical

angle 33�. The typical PTD error is acceptable in NDT applications

except when the angle is near critical (a = �78� or �12�). When

the flaw height increases, the oscillations fade and the quality of

the PTD simulation is improved.

Fig. 4 presents the paths of the diffracted waves generated at

critical incidence by the bottom tip of the backwall breaking crack

and comprise (a) a classical tip-diffracted SV bulk wave, (b) S wave

shed in the backscattering direction by the bottom tip irradiated by

a creeping P wave (some authors call the latter the P component of

the head wave), (c) the head wave (some authors call it the S com-

ponent of the head wave), also shed in the backscattering direction.

At critical angles both GTD and PTD amplitudes exhibit peaks

(Fig. 3b) and around the critical angles simulations of SV waves

are less reliable (particularly for small flaws).

To understand the deterioration in the quality of PTD near crit-

ical angles, the 45� SV oblique incidence is analysed for a vertical

1 For interpretation of color in Figs. 2 and 5, the reader is referred to the web

version of this article.
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flaw of 5 mm height using snapshots of the ultrasonic field simu-

lated using FEM (see Fig. 5). In these snapshots S1 is the wave front

of the incident beam. The geometrical axes of the incident and

reflected S beams are shown in red. S3 is the single wave reflected

on the flaw. At the angles larger than critical there are no P

reflected waves. P1 (S2) and P2 (S4) are the wave fronts of the waves

diffracted by the top and bottom crack tips, which have undergone

(no) mode conversion. In (c), (d) and (e) a scattered Rayleigh wave

is observed, which is due to the secondary diffraction (see Fig. 6).

When the beam hits the top (bottom) tip, the Rayleigh wave R1

(R2) is generated. This propagates along the crack face towards

the opposite tip. On reaching the bottom tip R1 is ‘‘reflected” to

produce R3 and sheds the bulk S5 wave. At the top tip, R2 (R3) gen-

erates the S6 (S7) bulk diffracted wave.

In snapshots (b), and particularly (c) of Fig. 5, behind the crack,

in the shadowed region not irradiated by the incident beam one

can see the straight front of the head wave (both the rays carrying

the head wave and its front are drawn in yellow). The line connects

the fronts of P1 and S2 cylindrical waves diffracted by the top crack

tip. It is tangential to the S2 front. The path of the head wave is sim-

ilar to that depicted in Fig. 4c.

After a study based on numerical validation using CIVA/

ATHENA, whereas the PTD prediction of specular reflection is

shown to be valid for direct SV waves echoes for ka > 1.5 about,

the validity of edge diffraction prediction by PTD appears to be

ka > (ka)max with (ka)max e [5,10] depending on the tilt angle and

on the distance between the flaw and the probe (since head waves

attenuate with this distance).

3.1.2. Regions surrounding critical rays

Let us now validate against FEM the two extensions of PTD pro-

posed for simulating the regions surrounding the critical rays. We

revisit the pulse echo inspection configuration of Fig. 1 and con-

sider two flaws, one 5 mm high and another, 20 mm high. As

above, both crack centres are located at the depth of 35 mm. The

echo amplitudes are simulated in Fig. 7 using the classical

PTD, PTD with smoothing, PTD/Simpson and CIVA/Athena FEM

method.

As discussed in [26], when using the PTD/Simpson model, in the

near field, that is, at small distances from a half-plane flaw the crit-

ical spikes in GTD (or PTD) scattering coefficients are smoothed.

The same effect is observed in Fig. 7. It is due to destructive

interference between the head waves and diffracted waves and

Fig. 1. (a) Immersion pulse echo inspection of a rectangular defect of 5 mm height and various tilts using SV45� waves at 5 MHz; (b) a = �45�, specular reflection

configuration; (c) a = 0�, the classical case of a vertical flaw inspected with the S45� wave in pulse echo configuration.

Fig. 2. Numerical validation of PTD in the pulse echo configuration of Fig. 1. Echo

magnitudes (in dB) versus the tilt angle a, simulated using GTD, KA and PTD.

Fig. 3. Numerical validation of PTD in the pulse echo configuration of Fig. 1; (a) and (b) (zoom): echo amplitude versus the tilt angle simulated using 2D FEM, KA or PTD.
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disappears away from the edge, since the head waves attenuate

with the distance faster than the classical diffracted waves. For

the same reason, at supercritical angles (a > �8), the PTD/Simpson

amplitudes oscillate. The oscillations are less marked for the

20 mm high flaw, because the head wave attenuates as it propa-

gates along the flaw. Nevertheless, the PTD/Simpson results are

significantly different to the FEM results, which are perfectly

smooth. This is due to the fact that the PTD/Simpson has been

developed for a semi-infinite and not a finite crack.

This is confirmed further by mimicking the situation of an infi-

nite half-plane and simulating for that purpose a pulse echo

inspection configuration similar to that in Fig. 1 but with a very

large flaw located in the very far field, its edge being at the depth

of 165 mm (see Fig. 8a). Contrary to the previous example (Fig. 7),

the PTD/Simpson spikes (Fig. 8b) are similar to the GTD/PTD ones,

since head waves attenuate with the distance to the edge. Unlike

the flaws of the 5 mm or 20 mm height in Fig. 7, the FEM results

(Fig. 7b) exhibit a spike similar to the GTD one too, which confirms

that the latter are physical in nature for a semi-infinite flaw. How-

ever, the FEM spike is smaller. This may be due to the fact that the

FEM model accounts for all incident beam directions, whereas in

PTD only an average beam direction is exploited at each edge

point.

It follows that for smaller flaws such as those considered in

Fig. 7, the FEM curve is smooth and the PTD smoothing model gives

a much better recipe than the PTD/Simpson one. The smoothness

of the FEM results is due to interference of head waves multiply

reflected at crack tips. It is not surprising that such smoothing is

not offered by PTD/GTD – no multiple reflection arises on semi-

infinite flaws. Other authors have reported similar behaviour and

justification for the smoothing of critical peaks in diffraction coef-

ficients for finite strips [3,32].

It follows that the PTD smoothing model is suitable for mod-

elling scattering by finite flaws common in NDT applications and

critical observation angles when head waves interfere with edge

diffracted waves. However, the model is not suitable for simulating

inspection configurations involving critical incidence, because in

such cases, the head waves interfere with reflected waves and KA

breaks down.

Fig. 4. S waves diffracted from the backwall breaking crack under critical incidence. (a) The classical tip-diffracted SV bulk wave; (b) the S wave shed by the bottom tip

irradiated by the P creeping wave; (c) the head wave radiated after diffraction of a P creeping wave at the bottom tip.

Fig. 5. FEM snapshots of interaction of the SV45� incident beam at 5 MHz with a 5 mm high flaw (dimensionless wave number ka = 25). Different images employ different

scales.

Fig. 6. Wave fronts of the waves observed in Fig. 5. (a) The top to bottom Rayleigh

wave path R1 and wave front S5 of the diffracted wave it generates, (b) the bottom

to top Rayleigh wave path R2 and wave front S6 of the diffracted wave it generates,

(c) the wave R3 reflected at the bottom tip producing the S7 wave.
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3.1.3. P waves

The next series of numerical experiment involves the pulse echo

inspection with incident P waves at 5 MHz of a rectangular defect

of 5 mm height and various tilts. A cylindrical specimen is used and

the probe emitting P0�waves is rotated to be positioned so that the

incident direction is normal to the component surface (Fig. 9a).

During this type of scanning, the beam impinges on the flaw with

P waves at different angles of incidence. The procedure has the

same effect as varying the flaw tilt angle in Fig. 1. In Fig. 9b the

echo amplitude (in dB) is simulated with different 2D models:

CIVA/ATHENA (FEM), KA and PTD are plotted versus the observa-

tion angle a. Fig. 9c is a zoom of Fig. 9b at small amplitudes. The

agreement of PTD model with FEM is very good for all tilt angles.

As expected, a good agreement with FEM is achieved by KA near

the reflection angle a = 90� (see Fig. 9b) and by GTD (not repro-

duced for simplicity) in diffraction configurations. In the latter

case, for the tilt angles, which are far from specular, KA produces

significant prediction errors.

For both P and SV waves, a deterioration in the PTD predictions

is observed for small flaws (rarely encountered in NDT) in TOFD

configurations, particularly because the Rayleigh waves propagat-

ing along the defect are not described by classical PTD. For P

waves, the overall validity range of PTD ka > (ka)max is about

(ka)max e [1,3]; the limit is much lower than for SV waves.

To understand the difficulties arising in modelling small flaws

further, we consider a typical case of the P45� oblique incidence

(at 5 MHz) on a 2 mm high flaw and analyse its backscattering

response using FEM snapshots (Fig. 10). This figure is more difficult

to interpret than Fig. 5, because of multiple mode conversions. P1 is

the wave front of the incident beam arriving from the bottom of

the figure. The geometrical axes of the incident and reflected

beams are drawn in green. P2 is the reflected wave. P3 and P4 are

the classical bulk waves diffracted from, respectively, the bottom

and top crack tip. In the far field, P1, P3 and P4 all merge behind

the flaw, at the shadow boundary of the incident wave. Behind

the flaw, the incident field is small but not negligible: The incident

beam is almost a plane wave and the incident rays are intercepted

by the flaw, but the resulting diffracted rays (P3 and P4) penetrate

the region. In the area insonified by the incident beam, P3 and P4
merge with P2 at each shadow boundary of the reflected P field.

S1 is the S wave reflected (mode converted) by the flaw, and S2
and S3 are the classical mode converted bulk waves diffracted

from, respectively, the bottom and top crack tip. S2 or S3 merge

with S1 at each shadow boundary of the reflected S (mode con-

verted) field.

In snapshots (c) and (d) the secondary diffractions are observed,

which are elucidated in Fig. 11. It shows that S4 and P5 are gener-

ated by the top tip diffracting the Rayleigh wave that is generated

by the bottom tip and then propagates along the flaw surface

upward. S5 and P6 (not shown) are later contributions due to the

top to bottom Rayleigh wave. In the snapshot in Fig. 11a, one can

observe the corresponding SV secondary diffractions (S4 and S5),

which have a larger amplitude than the mode converted secondary

P diffracted waves. Since the Rayleigh wave speed is close to the SV

Fig. 7. Comparison near�12� critical angle of different models simulating the pulse echo inspection with SV45�waves at 5 MHz of a rectangular defect ((a) 5 mm high and (b)

20 mm high) of various tilt.

Fig. 8. (a) The pulse echo configuration with the SV45� wave at 5 MHz of a 150 mm high rectangular defect (represented by the blue straight line) of various tilts situated in

the far-field. The field radiated by the emitter is shown in color code around the flaw. (b) Comparison of different models simulating the flaw response near the �78� critical

angle. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 9. (a) Inspection configuration with P waves at 5 MHz and various incidence angles of a rectangular defect of 5 mm height. (b and c) Echo amplitude (in dB) versus the tilt

angle (in �) simulated with 2D FEM, KA and PTD.

Fig. 10. FEM snapshots of interaction of the P45� incident beam at 5 MHz with a 2 mm high flaw (dimensionless wave number ka = 5).

Fig. 11. Wave fronts of the waves observed in Fig. 10(c). (a) FEM snapshots, (b) S4 and S5 wave fronts observed inside the yellow area of (a), (c) the bottom to top Rayleigh

wave path and wave front S4 of the diffracted wave it generates, (d) the top to bottom Rayleigh wave path and wave front S5 of the diffracted wave it generates. (For

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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speed, S4 starts being diffracted by the top tip about the time it is

reached by the wave front of S2 (Fig. 11a), which has been origi-

nally diffracted by the bottom tip.

3.2. TOFD configuration

A typical TOFD configuration presented in Fig. 12a involves the

SV45� wave at 5 MHz and a 5 mm high rectangular defect at vari-

ous tilt angles a. To study it two identical probes (12.7 mm diam-

eter) have been used in immersion, with 20 mm water path and

85 mm Probe Center Separation. The flaw is located near the cross-

ing point of the two probes’ beams. Fig. 12b presents the flaw echo

amplitude versus the tilt angle a simulated with GTD, KA, classical

PTD and PTD with smoothing. In this configuration, the critical tilt

angles are �102�, �78�, �12� and 12�, but at these angles the dis-

continuities in the PTD echo amplitudes prove small or negligible.

Therefore the smoothed and non-smoothed PTD models produce

similar results. A particularly good agreement between PTD and

FEM is obtained in Fig. 12b near the specular direction a = �90�.

However, for the scattered S waves, particularly, near the critical

angles PTD does not perform as well as FEM. Still, the overall agree-

ment is satisfactory. Note that similarly to the pulse echo experi-

ments for SV waves, errors in predicting the diffracted waves

with KA are significant. Therefore, so should be the errors in the

Huygens–Fresnel method of [11], which relies on the Kirchhoff

integral over a virtual flaw.

Thus, the model based on PTD with smoothing performs well in

both pulse-echo and TOFD configurations.

4. Experimental validation

Experimental validation of the systemmodel based on PTD with

smoothing has been carried out in both pulse echo and TOFD con-

figurations by studying corner echoes resulting from reflections

and diffraction. This is part of a CIVA experimental validation cam-

paign which has been carried out for several years [33].

4.1. Pulse echo configuration: corner echoes

In order to validate simulation using PTD model with smooth-

ing of corner echoes in pulse echo configuration, measurements

have been performed on a mock-up with vertical backwall break-

ing notches of various height (Fig. 13a). A 64 elements contact

matrix phased-array probe with a wedge generating 45� compres-

sional waves at 2.15 MHz (60% bandwidth) has been used

(Fig. 13c): its total dimensions is 446 ⁄ 20 mm2 with a gap between

elements of 0.2 mm in both directions. 2D scanning has been per-

formed over each reflector. At each probe position, several focusing

depths (from 20 to 40 mm depth) have been employed, with the

P45� deviation. The reference amplitude is the maximum ampli-

tude of the specular P45� direct echo from a 2 mm diameter SDH

positioned in the calibration mock-up at the 72 mm depth. To

check their reproducibility, all measurements have been carried

out several times (minimum two times for each flaw). The maxi-

mum difference in the results has proved to be less than 1 dB.

Fig. 13c and d shows experimental and simulated reconstructed

B-scans obtained over the 15 mm high backwall breaking notch

with the P45� deviation and focusing depth of 30 mm. A good

agreement between experimental and simulated B-scans and

echodynamics has been obtained. The corner echo involving no

mode conversion is identified as arriving from the bottom flaw

tip in reconstructed B-scans. Some differences are observed in

the T corner echoes, since the T beam includes head waves gener-

ated at the wedge/component interface, and these waves are not

accounted for in the beam model. Note that in this case, the corner

echo is due to two specular reflections, one from the backwall and

one from the flaw. Consequently, PTD gives results similar to KA

(Fig. 13b).

For all flaw heights and focusing depths, the resulting discrep-

ancy in P corner echoes has proved to be around or less than

2 dB (see Fig. 14). The most significant differences appear for small

notch heights when the P diffraction echo from the notch top edge

is mixed with the P corner echo. These interferences explain the

maximum in the plot of echo amplitude versus the notch height

observed both experimentally (around 2 mm height) and in simu-

lation (with a slight shift).

4.2. TOFD configuration: edge diffracted echoes and 3D configurations

In order to validate simulations of TOFD configuration [34],

results presented in [30] are discussed first. The authors have

employed a 2D symmetrical arrangement of the transmitting and

receiving probes over a cylindrical mock-up containing a real fati-

gue crack (Fig. 15a) and investigated variation in the amplitude of

the echo diffracted from the bottom flaw tip with the change in the

orientation of the transmitted and received beams (Fig. 15b).

The simulated curve has a well-defined minimum at about 38�,

which corresponds to the minimum of the P–P GTD coefficient

[30]. There is a good agreement between the PTD based model

Fig. 12. (a) The TOFD configuration at 5 MHz with the SV45� wave of a rectangular 5 mm high defect of various tilts. (b) Echo amplitude versus the tilt angle simulated using

2D FEM, KA, PTD and PTD with smoothing around the critical angles.
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Fig. 13. (a) The mock-up and the included surface-breaking notches, (b) comparison (in dB) of the experimental echodynamic curve and simulated ones using PTD and KA

simulations. Reconstructed B-scans over the 15 mm high backwall breaking notch, (c) experimental and (d) from PTD simulations. Delay law: the P45� deviation with the

focusing depth of 30 mm.

Fig. 14. Comparison measurement/simulation for the maximal amplitudes of longitudinal corner echoes of backwall breaking notches of different heights in a component of

extension 15 mm and height 30 mm. Delays law: P waves at 2 MHz focusing on several depths (a: 20 mm; b: 30 mm and c: 40 mm) along an axis at 45�, 64 elements contact

matrix probe.

10



and experimental results (GTD results are identical to PTD and are

not represented in Fig. 15b).

Let us now turn to our own experimental validation in 3D of the

proposed PTD based system model. Several notches have been

made in a planar specimen (Fig. 16a). In order to study the influ-

ence of both probes’ and flaw misorientations, two 6.35 mm diam-

eter probes emitting 45� P-waves at 2.25 MHz have been

positioned in a TOFD configuration with the 60 mm Probe Center

Separation and misoriented from the 0� skew angle to the 34� skew

angle. Fig. 16b presents a typical case of the 11� skew. Measure-

ments have been carried out on a rectangular 0� flaw, three defects

(with vertical misorientation of 10–30� for the top edge) and cali-

brated against a 2 mm diameter SDH. The resulting experimental

B-Scan is shown in Fig. 16c. Variation of the amplitude of the echo

from the top tip with the vertical misorientation is displayed in

Fig. 16d. Two models system models are investigated, one based

on the so-called 2.5D GTD, which involves the projection of the

incoming and scattered wave vectors on the plane normal to the

flaw edge and 2D GTD coefficients related to these projections,

and the 3D PTD. In the chosen configuration the latter is equivalent

to 3D GTD. The agreement between the 3D PTD model and exper-

imental data is good, errors are less than 0.5 dB, except for the 30�

misoriented flaw, for which the signal to noise ratio is low (see

Fig. 16c). The 3D PTD based model provides a slight improvement

over the 2.5D GTD model, the misorientations being quite small.

The last series of experiments has been performed to evaluate

the 3D effect of the flaw skew angle on the edge diffracted echo

amplitude. Tests have been carried out on the rectangular backwall

breaking flaw studied above using the same pair of transducers as

before (2.25 MHz central frequency, 45� compressional wave,

6.35 mm diameter). The probes have been positioned in a TOFD

configuration with the 60 mm Probe Center Separation, and the

Fig. 15. (a) A symmetrical TOFD configuration over a cylindrical mock-up with an entry surface breaking flaw (red vertical segment). (b) Comparison of 3D PTD simulations

with experimental results reprinted from [30], Fig. 15, Page 35, Copyright (1991), with permission from Elsevier. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)

Fig. 16. (a) A planar component containing misoriented backwall breaking flaws and a 2 mm diameter SDH, (b) the TOFD configuration with the 11� probes’ skew, (c)

experimental B-scan, (d) validation of the 2.5D GTD and 3D PTD models against the measured echoes from the top tips of misoriented backwall breaking flaws.
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component has been rotated while the probes remained fixed

(Fig. 17a). Such procedure is equivalent to fixing the position of

the component and varying the flaw skew angle. In order to

observe significant 3D effects the skew angle has been varied from

0� to 70�.

The experimental and simulated results are presented in

Fig. 17b. The experimental results show that the effect of the skew

angle on the diffracted echoes is negligible. Moreover, there is a

good agreement between experimental and PTD simulated results,

with the maximum difference of about 2 dB. Note that when the

skew is significant (>30�) the 2.5D GTD model breaks down.

5. Conclusions

An elastodynamic system model based on the Physical Theory

of Diffraction (PTD) has been developed to improve simulation of

crack echoes. This is a unified model allowing one to simulate both

reflection and diffraction phenomena. Numerical comparison with

a FEMmodel has shown a very good overall agreement for P waves

and S waves too, provided the latter are calculated at the incidence

or observation angles, which are significantly different from criti-

cal. Near the critical incidence (resp. observation) angles interfer-

ence takes place of the reflected (resp. diffracted) S waves with

the head waves. In regions surrounding critical observation angles,

the system model based on PTD with smoothing, proposed in this

paper, has proved more successful. The PTD model exhibits good

performances for crack sizes higher than the wavelength, the over-

all validity range of PTD ka > ðkaÞmax being wider for P waves

(ðkaÞmax 2 ½1; 3� about) than for S waves (ðkaÞmax 2 ½5;10� about).

Successful experimental validation of the model has been carried

out for diffraction and corner echoes in several typical NDT config-

urations, 2D and 3D, pulse echo and TOFD.
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