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ABSTRACT 

This article presents an ongoing work aiming at the 

development of an optimization tool for the 

assessment of building intrinsic performances. The 

objective is to enable for the reliable calculation of 

as-built envelope thermal parameters (resistance 

and capacitance) based on measurements collected 

over a limited period of time. The tool is based on 

the combination of a basic physical model and of 

optimization algorithms that automatically calibrate 
the model from measures. This paper presents a 

benchmarking study lead as part of this work to 

select an inverse optimization methodology, which 

is intended to identify a set of thermal parameters. 

Three methods have been tested for the building 

thermal inversion. The first method is based on a 

simple greedy resolution (Particle Swarm 

Optimization) whereas the other two are based on 

substitution model (Support Vector Regression and 

Metamodels). The study has been validated on a 

basic use case (monozonal building) and relied on a 

comparison between the predictions obtained from 
calibrated models and those obtained from the 

Energy Plus simulation environment. The study 

shows that metamodels coupled with a cross-

validation method (kriging) lead to the best results. 

INTRODUCTION 

Energy is a valuable asset and the basis of 

economic growth and societal well-being. 

Gradually, energy conservation has become a 

recognized priority for environment preservation 

and energy efficiency a prominent concern. The 

building sector is known to be one of the main 

contributors to energy consumption. It represents 
for instance 40% of energy consumption and 36% 

of CO2 emissions in the European Union (EU)1. 

Therefore, in order to reach the ambitious targets 

set by recent environmental policies (e.g. the EU 

2020 climate and energy package2), energy 

performances of buildings have to be significantly 

improved. In this respect, one major challenge is to 

enable for reliable and cost-effective assessment of 

as-built, intrinsic performances. Significant gaps 

are actually often observed, between “as-designed” 

and “as-built” building performances (P.De.Wilde 

2014). Enabling for the reliable assessment of as-
built intrinsic performances would help to identify 

                                                        
1
 http://ec.europa.eu/energy/en/topics/energy-

efficiency/buildings, accessed April 2014. 
2
 http://ec.europa.eu/clima/policies/package/index_en.htm, 

accessed April 2014. 

the causes of possible deviations and, gradually, to 

tackle their root causes. The good thing is that a 

significant number of tools for thermal modeling 

are available. These models are generally gathered 
into three categories: white box, black box and gray 

box models (A. Foucquier 2013a). White box 

models describe in details the physical behavior of 

the system modeled. They include numerous 

equations, parameters and variables and therefore 

are usually complex. Black box models, based on 

statistical models, may provide reliable predictions 

but do not allow for any physical analysis. Gray 

box models are hybrid: they rely on simpler 

physical modeling approaches, but can be 

calibrated from measures using optimization and 
statistical learning techniques. They allow for 

inverse modeling (calculation of actual thermal 

parameters from measures) with few building 

information and limited data collection. Gray box 

models could therefore be a good trade-off between 

ease of implementation and reliability for the 

implementation of intrinsic performances 

assessment solutions. However, to unfold their full 

potential, the following aspects have to be 

considered with proper attention: (i) the modeling 

approach shall be simple to use but shall as well 

allow for the calculation of the main thermal 
parameters; (ii) the optimization algorithms have 

both to be reliable and to require reasonable 

processing time; (iii) the process for collecting the 

data (building and measurements) shall be swift and 

simple. 

With respect to (i), we presented in a previous 

paper (A.Foucquier 2013b) a modeling approach 

based on a thermal-electric analogy that gave a 

sound foundation to our solution. This paper gives 

the outcomes of a study lead on the second issue 

(ii), i.e. the selection and the prototyping of the 

optimization algorithms.  

We specifically focused on the evaluation and 

testing of three optimization methods: Particle 

swarm optimization (PSO); the coupling of the PSO 

method with a regression model based on 

polynomial support vector regression (SVR); Meta-

models validated with a cross-validation method 

(kriging). The proposed methods are interesting 

because they can be used both for calibration of a 

white box model or for the regression of a black 

box model. In this paper, these methods were used 

for the calibration of physical model (white box) 
and in the same time to identify the thermal 

parameter of single-zonal building. Seven thermal 

parameters were identified and the predictions from 
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calibrated were compared to predictions from the 

EnergyPlus environment.  

The paper is structured as follows. A first section 

introduces the case study and the related model. 

The subsequent section presents the mathematical 
foundations of the particle swarm optimization 

method. The third section illustrates the two 

substitution models (support vector method and 

kriging). These two types of models will be 

compared with a basic theoretical example in the 

same section and the associated algorithms will be 

presented. The last section discusses the results 

obtained on the case study, before giving a 

conclusion.   

CASE STUDY, MODEL 

PRESENTATION AND PROPOSED 

SOLUTIONS 

In this section, we present the case study. The first 

sub-section describes the targeted building. Then, 

the electrical analogy based on Resistance 
Capacitances (RC)-modeling of the building is 

described. At last, some considerations about model 

simplification are given, before highlighting the 

thermal parameters considered in the optimization 

phase. 

Case study  

The geometric information (building, openings) is 

supposed to be known and is used as an input to the 

optimization process. We have considered a mono-

zone building of dimension 7.5x6.5x2.5 m3 as 

shown in Figure 1. This building includes 7 

openings distributed on the 4 façades. Table 1 

summarizes the geometrical characteristics of these 

openings.  

 

Figure 1 Case study geometry 

Table 1 

Geometric parameters of the openings 
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HEIGHT 
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2.15 9.5 2.15 1.05 1.05 2.24 

WIDTH 

(M) 
2.3 1 1 0.8 0.8 1 

 

RC-network modeling (A. Foucquier 2013a) 

The building topology is determined by an 

undirected weighted graph 𝐺 = (ℵ, ℰ,𝑊) (K. Deng 

2010). ℵ ≔ {1,2,… , 𝑛} denotes the set of nodes of 

the graph, ℰ ⊂ ℵ × ℵ denotes the set of edges and 

W is the set of edges belonging to the same element 

(same wall or zone or opening). A node represents a 

point measuring temperature and an edge is the 

segment that connects two adjacent nodes. Each 

node 𝑖 ∈ ℵ is assigned by a temperature 𝑇𝑖 and a 

capacitance 𝐶𝑖 and each edge 𝑎 = (𝑖 ∈ ℵ, 𝑗 ∈ ℵ) ∈
ℰ is assigned by a resistance 𝑅𝑖,𝑗 that 

satisfies 𝑅𝑖,𝑗 = 𝑅𝑗,𝑖. Since the thermal model is an 

RC-network, its dynamics is described by a system 

of coupled first order linear differential equations of 

the form: 

�⃗⃗� .
𝜕 �⃗⃗� 

𝜕𝑡
(𝑡) = 𝑨 �⃗⃗� (𝑡) + �⃗⃗⃗� (𝑡) (1) 

where �⃗⃗� (𝑡) = [𝑇1(𝑡), 𝑇2(𝑡),… , 𝑇𝑛(𝑡)]
′ denotes the 

column temperatures vector  at the time t for the set 

of building nodes mesh, 𝑪 ⃗⃗  ⃗ = [𝐶1, 𝐶2,… , 𝐶𝑛]′  is the 

column vector of nodes capacitance and 𝚽 ⃗⃗⃗⃗ =
[𝜙1 , 𝜙2, … , 𝜙𝑛]′ is the column vector of radiative, 

solar and net flux. The entries of the transition-rate 

matrix 𝑨 = (𝐴𝑖𝑗 , 𝑖, 𝑗 ∈ ℵ) are given by: 

𝐴𝑖𝑗 =

{
 
 

 
 
0         𝑖𝑓 𝑖 ≠ 𝑗 𝑎𝑛𝑑 (𝑖, 𝑗) ∉ ℰ 
1

𝑅𝑖𝑗
      𝑖𝑓 𝑖 ≠ 𝑗 𝑎𝑛𝑑 (𝑖, 𝑗) ∈ ℰ

−∑𝐴𝑖𝑗
𝑗≠𝑖

                   𝑖𝑓   𝑖 = 𝑗 

 (2) 

The initial temperature is denoted by 𝑇(0). 

Model simplification 

In order to reduce the size of the optimization 

search space and keep computation time within 

reasonable boundaries, it is necessary to simplify 

the geometry. The approach of geometric 

simplification and its impact on fitness resolution is 

presented in (A.Foucquier 2013b). This study 

shows that merging walls and openings has few 

impact on reliability and improves significantly the 

performances. Figure 2 shows the model resulting 

from the application of this simplification approach 
to our use case. The six walls have been merged 

into a single wall and the seven openings into a 

single opening. As can be seen, the wall is 

supposed a monolayer one and is modeled by a 

2R3C (2 resistances, 3 capacitances) configuration. 

 

Figure 2 Simplified RC model of the use case 
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As a consequence, the number of parameters that 

will be identified by the optimization algorithms is 

reduced to 7. These are: 

 The overall heat transfer coefficient and 

capacitance of the wall (𝑈 =
1

𝑅𝑆
, 𝐶), where 

R is the wall’s resistance and S is his 

surface.  

 The distribution coefficient of 𝑈 in the 

wall (𝐶𝑜𝑒𝑓𝑟𝑒𝑝,𝑈),  

 The net flow resistance ℎ𝑛𝑒𝑡 of the wall, 

 The overall heat transfer coefficient (U) of 

the opening , 

 The radiative distribution coefficient of the 

zone (Coefrep,Rad), 

 The ventilation rate for the zone 
(ACHVentil), 

Proposed algorithms presentation 

The problem studied does not fit mathematical 

requirements, it could not be properly solved by 

classical mathematic and required then a greedy 

resolution. A grid search resolution is based on 
building a solution incrementally by adding an item 

at every step regarding a greedy criterion. In this 

context a reference method (called particle swarm 

optimization) was tested for the resolution of our 

problem. Despite the simplicity of the 

implementation of this method, obtaining optimal 

solution requires a large number of samples which 

goes up the run time and do not guarantee that a 

global minimum of the objective function. 

Considering that one simulation of a set of 

parameters needs at least one minute, one have to 
decrease the number of iterations in order to keep 

the computation time realistic.   

To minimize the number of tests required to obtain 

the optimal, using a surrogate model can be very 

interesting. The key of such model is to estimate the 

overall shape of the cost function in order to guide 
the convergence procedure. In this context two 

substitution models have been tested: Support 

vector machine and kriging models. 

The two next sections are devoted to the 

presentation of the three optimization algorithms. 

Firstly, we present an optimization tool based on 
population of random solutions updating for the 

search of optima. This method is named particles 

swarm optimization. Secondly, two algorithms 

based on substitution model are presented. To this 

end, we first describe the two regression models 

used (Support vector machine and kriging models). 

These models are then compared thanks to a basic 

theoretical test case. At last, the algorithms 

associated are explained in detail.   

GRID SEARCH METHOD: 

PARTICULES SWARM OPIMISATION 
(PSO) 

This is an optimization method developed by 

Russell Eberhart and James Kennedy (R. Eberhart 

1996) which is based on the simulation of the 

movement of a particles group. Through 

displacement rules of each particle, the particles 

converge towards an optimal model in the sense of 

the objective function. This method does not 

require the calculation of the gradient and therefore 

can be used for black box models. 

Each sample is mapped to a particle. The principle 

of the PSO method is to use simultaneously 

multiple particles that explore the solution space by 

sharing their experience in order to converge to a 

global minimum. The future position of a particle 

depends on its velocity and an attraction to the most 

interesting position met both by each lonely particle 

and by the group. The PSO algorithm (Y.Cheng 
2015) controls the movement of the n particles in 

space is as follows. At each iteration k, each 

particle i is defined by: 

 Curent position 𝑋𝑖
𝑘 

 Current velocity Vi
k 

 Best position encountered during travel Pi 

 The best position of the set of particles at 

the kth iteration Pg. 

At each iteration, the velocity of the ith particle is 
calculated as follows: 

𝑉𝑖
𝑘+1 = 𝜔.𝑉𝑖

𝑘 + 𝑐1. 𝑟𝑎𝑛𝑑. (𝑃𝑖 −𝑋𝑖
𝑘)

+ 𝑐2. 𝑟𝑎𝑛𝑑 (𝑃𝑔 −𝑋𝑖
𝑘) 

(3) 

Where 𝜔, 𝑐1, 𝑐2 are fixed values, and rand are 

random numbers in the [0, 1] interval. The position 
of each particle is defined by: 

𝑋𝑖
𝑘+1 = 𝑋𝑖

𝑘 +𝑉𝑖
𝑘+1 . 𝑑𝑡 (4) 

 

Figure 3 The three steps of the PSO algorithm  

Uploading of space work ( best> conv and iteration number < 
iteration number max)

As convergence is wrong :

For each particle:

* Change the velocity of the particle and the new 
particule

* Evaluate the finesse of this new particle ( i,new ) and 
update the best population and the best particule 

Initializing

- Simulate the images of these samples (Y1, ..., YN) 

- Evaluate the fitness of each particle ( 1 ... N) 

- Fix the best population best = (P1, ..., PN) and the best 
particule (Pbest, best) 

Starting space

- Set a starting set  = (P1, ..., PN) and

- Initialize also the speed of each particle (V1, ..., VN)
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The movement of the group of particles is evaluated 

until the algorithm converges or until the maximum 

number of iterations is reached. Figure 3 outlines 

the three steps of the algorithm. 

METHODS BASED ON 

SUBSTITUTION MODEL 

In an optimization process, using a simple 
analytical and differentiable model is preferable. 

Substitution models have the advantage to give a 

good approximation of the system response, in a 

simpler and more manageable way. Such models 

can be a simple mathematical representation of a 

numerical model, a black box model, or a 

behavioral model (related to experimental data). 

There are a variety of mathematical models 

classified under this category. These methods are 

commonly used for the benefits they provide: 

 An understanding of the relationship 

between the governing inputs and outputs 

of the model 

 A quick analysis tool for optimization 

 A quick and easy coupling between 

dependent fields and disciplines. 

This approximation via mathematical models 

involves three requirements classified and 

characterized in (T. Simpson 2001) 

 The choice of experiments points, 

 The choice of the type of model best suited 

to the representation of data, 

 The experiments approximation (fitting), 

i.e. the determination of the unknown 

parameters of the model equations. 

In this study, two algorithms based on substitution 

model have been used: SVR and kriging 

metamodel.  

Substitution models 

Support vector method (SVM) 

Support vector machines (SVMs) are a set of 

related supervised learning methods that analyze 

data and recognize patterns, used for classification 

(machine learning) and regression analysis. The 
original SVM algorithm was invented by Vladimir 

Vapnik (V.Vapnik 1995). 

Suppose a set of observational data (samples) 

(𝑋1, 𝑌1), (𝑋2, 𝑌2), . . . , (𝑋𝑘 , 𝑌𝑘) such as 𝑋𝑖 ∈ ℝ
𝑛 and 

associated value 𝑌𝑖 ∈ ℝ  ∀ 𝑖 ∈ {1, … , 𝑘} . For the 
regression problem based on the SVM, the 

objective is to find a function 𝑓 that minimizes the 

difference between 𝑓(𝑋𝑖) and 𝑌𝑖 , ∀ 𝑖 ∈ {1,… , 𝑘}. 
The function that was used in this work is 

polynomial of order 2 and the quadratic 

optimization problem was solved with the interior 

point method. This function is named the SVM 

regression function and can be written as: 

𝑓(𝑋) = ∑ 𝑤𝑖𝐾(𝑋,𝑋𝑖) 
1≤𝑖≤𝑛

+ 𝑏 (5) 

where K is a 2-order polynomial kernel function  

𝐾(𝑋,𝑋𝑖) = (〈𝑋, 𝑋𝑖〉 + 1)
2 (6) 

Kriging metamodel  

Kriging is an approximation or modeling method 
based on a statistical model (J. Sacks 1989). The 

typical use of this approximation is to construct a 

prediction model based on experimental data. 

Given a set of m samples S = [X1, … , XM] with 

Xi ∈ ℝ
n and the answers Y = [Y1, … , YM] with 

Yi ∈ ℝ. The data are assumed to satisfy the 

normalization conditions:  

{
μ[S(: , j)] = 0, V[S(: , j), S(: , j)] = 1, j = 1,… ,n

μ[Y] = 0,    V[Y, Y] = 1,       
  (7) 

μ, V denote the mean and covariance respectively. 

We assume a model ŷ which approximates the 

response y (x)  ∈  ℝ, for an n-dimensional input 

x ∈ D ⊂  ℝn, based on a regression model ℱ and a 

random function (stochastic process) z such as : 

ŷ (x)   =  ℱ(β, x) + z(x)  (8) 

Validation and comparison of the substitution 

models 

This paragraph illustrates the validation of the two 

substitution model thanks to a simplified, 

theoretical use case.  The aim is to compare the 

resulting model obtained with SVR and kriging 

with a theoretical model that has been analytically 

defined.  

Validation case: 

We studied an RC model consisting of two nodes to 

represent the behavior of a homogeneous single 

layer wall that separates two adjacent areas z1 and 
z2 (Figure 4).  

 

Figure 4 modelling of heat transfer between two 

zone by a 1R2C network wall  

This network can be translated to the following 

system of equations: 

R
Rco,1

Rnet

Rco,2

T1 T2

Tz2Tz1

Rnet

C/2 C/2
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(
𝐶/2

𝐶/2
)(

𝜕𝑇1
𝜕𝑡
𝜕𝑇2
𝜕𝑡

)

=

(

 
 
−
1

𝑅
−

1

𝑅𝑐𝑜,1
−

1

𝑅𝑛𝑒𝑡

1

𝑅
1

𝑅
−
1

𝑅
−

1

𝑅𝑐𝑜,2
−

1

𝑅𝑛𝑒𝑡)

 
 

⏟                            
𝐴(𝑅,𝐶)

(
𝑇1

𝑇2
)

+

(

 
 

1

𝑅𝑐𝑜,1
+

1

𝑅𝑛𝑒𝑡
0

0
1

𝑅𝑐𝑜,2
+

1

𝑅𝑛𝑒𝑡)

 
 

⏟                  
𝐵(𝑅,𝐶)

(
𝑇𝑧1

𝑇𝑧2
) 

(9) 

 

With: 

 Tz1, Tz2: Temperature of the two adjacent 

zone z1 and z2 [°C] 

 T1, T2: Temperature of the two surfaces of 

the wall [°C] 

 S : Surface of the wall [m2] 

 R: Resistance of the wall [K/W] 

 C: Heat capacity of the wall [J/K] 

 Rco,1, Rco,2 : the two convection resistances 

of the wall [W/(m2.K)] 

 Rnet: net resistance of the wall 

The parameters to be determined are the thermal 

resistance R of the wall, and its heat capacity C. 

The other variables are either measured or pre-

determined. We consider the wall that separates the 

ground floor and the subsoil in the I-MA house of 

the INCAS experimental platform of the French 

National Institute of Solar Energy (INES) in Le-

Bourget-du-Lac. The values of the other parameters 

describing the wall are (Clara 2012): 

 Rco,1  = 0.01 W/(m2.K) 

 Rco,2  = 0.0045 W/(m2.K) 

 Rnet     = 0.004 W/(m2.K) 

We use the SVR and the kriging models to 

construct a polynomial function �̂�𝑝 that predicts the 

behavior of:  

𝐹(𝑅, 𝐶) = ‖(
𝐶/2

𝐶/2
)(

𝜕𝑇1
𝜕𝑡
𝜕𝑇2
𝜕𝑡

) − 𝐴(𝑅, 𝐶). (
𝑇1

𝑇2
)

− 𝐵(𝑅, 𝐶). (
𝑇𝑧1

𝑇𝑧2
)‖ 

(10) 

The search space is defined by the “typical” 

intervals of values 𝑅 ∈ [0.1;  50]K/W and 

𝐶 ∈ [1;1𝐸8](𝐽/𝑊).  

Results and comparison  

For the validation of the two substitution model 

studied in this paper, we used these models to 
estimate the function F. The estimation of this 

function is performed according to an order 2 

polynomial. The construction of the SVR models 

requires three experimental points by again the 

kriging model need six experimental points. To 

compare the two models, six samples points (set of 

evaluations function use to construct the models) 

are considered for the construction of the SVR and 

kriging model. The Figure 5 shows the 

approximation of the function test F by the kriging 

and SVR models for distribution of the six samples 

points. The error average quadratic (MSE (6)) is 
illustrated in Figure 6 for the two models (J. Sacks 

1989). 

𝑀𝑆𝐸 = 𝜎2[1 − 𝑟𝑇𝑅−1𝑟 +
(1 − 1𝑇𝑅−1𝑟)2

1𝑇𝑅−11
 (11) 

With : 

 R : the correlation matrix between the 
different samples points, 

 r : the vector which represents the 

correction between the n samples points 

and unevaluated variable 

 

Figure 5 SVR and kriging polynomial model with 6 

samples data 

 
 Figure 6 Mean squared error of the SVR and 

kriging polynomial model  

We note that the average error between the model 

and the function is very low in the vicinity of the 

samples points. Furthermore, the error increases on 

the ends of the domain. In the cases treated, the 

SVR model could reproduce a faithful 

approximation of the function only on the vicinity 

of the samples points. In addition, an increase in the 

number of these sample points will significantly 
improve the modeling results. The same 

observation can be made with the kriging model but 
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the error is lower than the one obtained with the 

SVR model.  

Algorithm based on SVR model  

Since the two models seem to be able to fit the 

targeted function that implies thermal parameters 
the global procedure of parameters estimation could 

be described.  

The algorithm starts by choosing n random samples 

(𝑋1, … , 𝑋𝑁) and then simulates these samples with 

our model (𝑌1, … , 𝑌𝑁), so that the difference with 

the reference temperature(𝜉1 = |𝑌1 − 𝑌𝑅|, … , 𝜉𝑁 =
|𝑌𝑁 − 𝑌𝑅| is minimized. SVM is then used to 

determine a regression model denoted 𝑓 such as 

𝑓(𝑋𝑖) ≈ 𝜉𝑖. To validate this model, the following 

fitness function is used: 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =
1

𝑁
∑ |𝑓(𝑋𝑖) − 𝜉𝑖|1≤𝑖≤𝑁 .  

Once the SVM regression model is validated, the 

PSO method is used to determine the minimum 

(𝜉𝑆𝑉𝑅,𝑚𝑖𝑛) of the SVR function f that matches to the 

set of parameters 𝑋𝑚𝑖𝑛,𝑓 (𝜉𝑆𝑉𝑅,𝑚𝑖𝑛 = 𝑓(𝑋𝑚𝑖𝑛,𝑓). 

The algorithm is stopped if the 𝜉𝑆𝑉𝑅,𝑚𝑖𝑛  reaches the 

convergence criterion. Otherwise 𝑋𝑚𝑖𝑛,𝑓 and other 

new particles are added to the set of samples. 

Figure 7 summarizes the successive steps of the 

SVR-PSO algorithm. 

 

Figure 7 PSO-SVM algorithm  

Algorithm based on kriging model 

The algorithm starts with the selection of an initial 

set of samples and the simulation of all samples 

possible combinations (step 1 and 2); this leads to 

the construction of an observation data space 

(samples) (𝑋1, 𝑌1), (𝑋2, 𝑌2), . . . , (𝑋𝑟 , 𝑌𝑟) such as 

𝑋𝑖 ∈ ℝ
𝑛 and 𝑌𝑖 ∈ ℝ  ∀ 𝑖 ∈ {1, … , 𝑟}. The next step 

is to adjust r kriging metamodels for these 
simulation data (step 3) and validate these models 

(step 4). As the test proclaims one or more invalid 

meta-models, we update the design of models by 

simulating of additional input combination (step 5) 

of global research area in order to further refine the 

r- metamodels. 

When all r kriging models are valid, a solver is used 

to estimate the optimal location based on the 

kriging model (step 6). Then the algorithm checks 
whether the optimal sample has already been 

simulated and if the convergence criterion is 

reached (step 7). In the case where the convergence 

criteria have not yet been reached, another 

combination is added to the previous base (step 8). 

The algorithm is summarized in Figure 8 (J.P.C. 

Kleijnen 2010), (J.P.C.Kleijnen 2014). 

 

 

Figure 8 Kriging algorithm  

RESULTS AND COMPARISON 

The three methods previously described and 

validated on the theoretical case have been applied 

to the mono-zone building use case. The aim is to 
calculate the values of the seven thermal parameters 

listed in the previous section. The following figure 

shows the evolution of the error as a function of the 

number of iterations, for each the three methods 

until the convergence is obtained.  

The results show the limitation of PSO method, 

where the convergence process is slow due to the 

attraction of local minima with 100 iterations 

whereas SVR or kriging obtain a similar error with 

only 30 iterations. Since each iteration requires a 

significant processing time, this approach does not 

seem to be well suited for our application scope. On 

the contrary, PSO-SVR and kriging give better 

results. They are able to significantly reduce the 

number of iterations and thus the calculation time. 

Kriging seems to bring an additional benefit from 

the robustness point of view: the algorithm is less 
sensitive to local minima and results in a smoother 

convergence pattern. The number of models 

evaluations required to reach the optimal solution is 

past from 500 with the PSO method to 250 with 

PSO-SVR method and 150 with kriging method. 
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simulate the images of these samples (Y1, …, YN) (1), 
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This significant reduction is reflected in a 

significant reduction in calculation time (4h for 

PSO method, 2h for PSO-SVR method and 1.5h for 

kriging method). The number of models evaluation 

is different from the iteration number because the 

three algorithm start with a no-single set of 

samples. Moreover, the PSO algorithm reevaluates 

the start set sample at each iteration, which explains 

the considerable increase of the evaluation models 

total number.  

 

Figure 9 Application of the optimization methods to 

the use case. Evolution of the error as a function of 

the number of iteration. 

The validation of our model is performed over a 

period of one year. However, for the clarification of 

the result visualization, only two weeks are 

represented. Indeed, Figure 10 indicates the 

operative temperature over two weeks for the 

results obtain with the three proposed optimization 

algorithms compared with the EnergyPlus result. 

As we can see, the temperature estimated with the 
kriging model is much more representative of the 

reference temperature of EnergyPlus.  

 

Figure 10 Operative temperature comparaison of 

the optimization and EnergyPlus results for the 

quasi-passive monozonal building  

The evolution of the error between the operative 

temperature and the EnergyPlus simulation results   

displayed in Figure 11 for the three algorithms. 

The error distribution around the average value is 

showed in the Figure 12.  

 

Figure 11 Histograms of the error between the 

operative temperature and EnergyPlus results for 

the quasi-passive monozonal building 

 
Figure 12 Distribution of the error for the 3 

proposed optimisation algorithms  

The three histograms show a Gaussian error 
distribution. The mean of the error distribution µ is 

equal to the value of convergence criterion of the 

algorithms. The standard deviation 𝜎 of the error 

distribution is significantly larger with the PSO 

algorithm compared to the two other algorithms 

where the standard derivation is almost identical 

(see Figure 13, where the values of the parameters 

identified obtained with the three algorithms is 

displayed). 

 
Figure 13 Numeric values of the parameters 

identified with the three algorithms optimization 

The results presented above indicate a small error 

(≤ 5%) between the parameters identified with the 

three algorithms. We can then use these algorithms 

not only for, the calibration of our physical model 

but also the estimation of building intrinsic 

performances. 
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CONCLUSION 

Energy efficiency is a prominent concern in the 

AEC sector. Modeling and simulation tools can 

help to reduce the energy consumption of the 

building and meet the requirements of existing 

energy labels, but fail to solve the “energy gap” 

problem – deviation of as-built energy 

performances from as-designed performances. It 

would therefore be beneficial to generalize as-built 

intrinsic performances assessment tools, able to 

reliably calculate the actual performances from 

limited (in time and scope) measurements. One 
promising path, to enable such tools, is to rely on 

so-called “grey-box” modeling approaches, which 

advocate the combination of simplified physical 

models and optimization algorithms. These 

approaches allow for the calibration of the models 

from measurements and, this way, for the deduction 

of the thermal parameters of the building, i.e. 

inverse modeling of the building. 

This paper gave an account of as study lead as part 

of the development of such an inverse modeling 

tool. The first steps of this development focused on 

the definition of a simplified modeling approach 

(A. Foucquier 2013a) and (A.Foucquier 2013b). 

The study described in this paper focused on the 

assessment and selection of the optimization 

algorithm. Three optimization methods were 

implemented and compared (PSO, PSO-SVM, and 
kriging), based on a simple mono-zone building use 

case. The results show that convergence is faster in 

the case of PSO-SVM and kriging. PSO alone tends 

to get attracted by local minima and does not 

perform as well. The convergence patterns also 

suggest that kriging will be more robust and 

probably, the best candidate. 
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