F. Abramovich, T. Sapatinas, and B. Silverman, Stochastic expansions in an overcomplete wavelet dictionary Probability Theory and Related Fields, pp.133-144, 2000.
DOI : 10.1007/s004400050268

A. Antoniadis, J. Bigot, and T. Sapatinas, Wavelet Estimators in Nonparametric Regression: A Comparative Simulation Study, Journal of Statistical Software, vol.6, issue.6, pp.1-83, 2001.
DOI : 10.18637/jss.v006.i06

URL : https://hal.archives-ouvertes.fr/hal-00823485

O. E. Barndorff-nielsen and J. Schmiegel, L??vy-based spatial-temporal modelling, with applications to turbulence, Russian Mathematical Surveys, vol.59, issue.1, p.65, 2004.
DOI : 10.1070/RM2004v059n01ABEH000701

A. Canale, D. Blasi, and P. , Posterior asymptotics of nonparametric location-scale mixtures for multivariate density estimation, Bernoulli, vol.23, issue.1, pp.379-40415, 2017.
DOI : 10.3150/15-BEJ746

URL : http://arxiv.org/pdf/1306.2671

D. Blasi, P. Peccati, G. Prünster, and I. , Asymptotics for posterior hazards, The Annals of Statistics, vol.37, issue.4, pp.1906-1945, 2009.
DOI : 10.1214/08-AOS631

R. De-jonge and J. H. Van-zanten, Adaptive nonparametric Bayesian inference using location-scale mixture priors, The Annals of Statistics, vol.38, issue.6, pp.3300-3320, 2010.
DOI : 10.1214/10-AOS811

G. R. Easley, F. Colonna, and D. Labate, Improved radon based imaging using the shearlet transform, Independent Component Analyses, Wavelets, Neural Networks, Biosystems, and Nanoengineering VII, p.715, 2009.
DOI : 10.1117/12.820066

URL : http://www.math.uh.edu/~dlabate/Shear_Rad_Inv_SPIE.pdf

M. D. Escobar and M. West, Bayesian Density Estimation and Inference Using Mixtures, Journal of the American Statistical Association, vol.55, issue.430, pp.90-577, 1994.
DOI : 10.1007/978-1-4612-2714-4_16

S. Favaro, A. Guglielmi, and S. G. Walker, A class of measure-valued Markov chains and Bayesian nonparametrics, Bernoulli, vol.18, issue.3, pp.1002-103011, 2012.
DOI : 10.3150/11-BEJ356

URL : https://doi.org/10.3150/11-bej356

J. Geweke, Evaluating the accuracy of sampling-based approaches to calculating posterior moments, Bayesian Statistics, vol.4, pp.169-193, 1992.

S. Ghosal and A. Van-der-vaart, Convergence rates of posterior distributions for noniid observations, The Annals of Statistics, vol.35, issue.1, pp.192-223, 2007.
DOI : 10.1214/009053606000001172

URL : https://doi.org/10.1214/009053606000001172

H. Ishwaran and L. F. James, Computational Methods for Multiplicative Intensity Models Using Weighted Gamma Processes, Journal of the American Statistical Association, vol.99, issue.465, 2004.
DOI : 10.1198/016214504000000179

J. F. Kingman, Poisson Processes, p.706, 1992.
DOI : 10.1002/0470011815.b2a07042

A. Lijoi and B. Nipoti, A Class of Hazard Rate Mixtures for Combining Survival Data From Different Experiments, Journal of the American Statistical Association, vol.103, issue.506, pp.802-814, 2014.
DOI : 10.1111/j.1369-7412.2007.00606.x

A. Y. Lo and C. Weng, On a class of Bayesian nonparametric estimates: II. Hazard rate estimates, Annals of the Institute of Statistical Mathematics, vol.12, issue.2, pp.227-245, 1989.
DOI : 10.1002/9780470316511

J. S. Marron, S. Adak, I. M. Johnstone, M. H. Neumann, and P. Patil, Exact Risk Analysis of Wavelet Regression, Journal of Computational and Graphical Statistics, vol.7, issue.710, pp.278-309, 1998.
DOI : 10.2307/1390705

P. Müller, A. Erkanli, and M. West, Bayesian curve fitting using multivariate normal mixtures, Biometrika, vol.83, issue.1, pp.67-79, 1996.
DOI : 10.1093/biomet/83.1.67

Z. Naulet and . Baratébarat´baraté, Some Aspects of Symmetric Gamma Process Mixtures, Bayesian Analysis, vol.13, issue.3, pp.17-1058, 1214.
DOI : 10.1214/17-BA1058SUPP

URL : https://hal.archives-ouvertes.fr/cea-01838175

R. M. Neal, Markov Chain Sampling Methods for Dirichlet Process Mixture Models, Journal of Computational and Graphical Statistics, vol.9, issue.2, pp.249-265, 2000.
DOI : 10.1080/10618600.2000.10474879

G. Peccati and I. Prünster, Linear and quadratic functionals of random hazard rates: An asymptotic analysis, The Annals of Applied Probability, vol.18, issue.5, pp.1910-1943, 2008.
DOI : 10.1214/07-AAP509

URL : https://hal.archives-ouvertes.fr/hal-00115565

B. S. Rajput and J. Rosinski, Spectral representations of infinitely divisible processes Probability Theory and Related Fields, pp.451-487, 1989.
DOI : 10.1007/bf00339998

W. Rudin, Real and Complex Analysis, p.706, 1966.

W. Shen, S. T. Tokdar, and S. Ghosal, Adaptive Bayesian multivariate density estimation with Dirichlet mixtures, Biometrika, vol.101, issue.1, pp.623-640, 2013.
DOI : 10.1016/j.jmva.2010.06.012

L. A. Shepp and B. F. Logan, The Fourier reconstruction of a head section, IEEE Transactions on Nuclear Science, vol.21, issue.3, pp.21-43, 1974.
DOI : 10.1109/TNS.1974.6499235

M. West, Hyperparameter estimation in Dirichlet process mixture models. Duke University ISDS Discussion Paper #92-A03, p.709, 1992.