E. A. Zabolotskaya and R. V. Khokhlov, quasi-plane waves in the nonlinear acoustics of confined beams, Sov. Phys. Acoust, vol.15, issue.1, pp.35-40, 1969.

V. P. Kuznetsov, Equation of nonlinear acoustics, Sov. Phys. Acoust, vol.16, issue.4, pp.467-470, 1970.

.. F. Hamilton and C. L. Morfey, model equations, pp.41-63, 1998.

J. Tjøtta, S. Tjøtta, and E. H. Vefring, propagation and interaction of two collimated finite amplitude sound beams, J. Acoust. Soc. Am, vol.88, issue.6, pp.2859-2870, 1990.

J. Tjøtta, S. Tjøtta, and E. H. Vefring, Effects of focusing on the nonlinear interaction between two collinear finite amplitude sound beams, J. Acoust. Soc. Am, vol.89, issue.3, pp.1017-1027, 1991.

, nonlinear pressure fields due to focused circular apertures, J. Acoust. Soc. Am, vol.91, issue.2, pp.713-717, 1992.

V. F. Baker and . Humphrey, distortion and high-frequency generation due to nonlinear propagation of short ultrasonic pulses from a plane circular piston, J. Acoust. Soc. Am, vol.92, issue.3, pp.1699-1705, 1992.

.. F. Hamilton, Time-domain modeling of pulsed finite-amplitude sound beams, J. Acoust. Soc. Am, vol.97, issue.2, pp.906-917, 1995.

F. Hamilton, measurements of harmonic generation in a focused finite-amplitude sound beam, J. Acoust. Soc. Am, vol.98, issue.6, pp.3439-3442, 1995.

.. F. Hamilton and D. T. Blackstock, Timedomain modeling of finite-amplitude sound in relaxing fluids, J. Acoust. Soc. Am, vol.99, issue.6, pp.3312-3318, 1996.

F. Hamilton, nonlinear distortion of short pulses radiated by plane and focused circular pistons, J. Acoust. Soc. Am, vol.102, issue.5, pp.2539-2548, 1997.

, numerical simulation of the acoustic field of a phased-array medical ultrasound scanner, J. Acoust. Soc. Am, vol.104, issue.3, pp.1274-1283, 1998.

.. T. Frinking and N. Jong, simulations and measurements of nonlinear pressure field generated by linear array transducers, Proc. 1999 IEEE Ultrasonics Symp, pp.1511-1514, 1999.

R. O. Averkiou and . Cleveland, modeling of an electrohydraulic lithotripter with the KZK equation, J. Acoust. Soc. Am, vol.106, issue.1, pp.102-112, 1999.

.. J. Zemp, J. Tavakkoli, and R. S. Cobbold, modeling of nonlinear ultrasound propagation in tissue from array transducers, J. Acoust. Soc. Am, vol.113, issue.1, pp.139-152, 2003.

X. Yang and R. O. Cleveland, Time domain simulation of nonlinear acoustic beams generated by rectangular pistons with application to harmonic imaging, J. Acoust. Soc. Am, vol.117, issue.1, pp.113-123, 2005.

F. D. Fox and . Tranquart, computation of steered nonlinear fields using offset KZK axes, Proc. 2005 IEEE Ultrasonics Symp, pp.1984-1987, 2005.

V. A. Khokhlova, ponomarev, m. a. averkiou, and l. a. crum, "nonlinear pulsed ultrasound beams radiated by rectangular focused diagnostic transducers, Acoust. Phys, vol.52, issue.4, pp.481-489, 2006.

J. E. Soneson, a parametric study of error in the parabolic approximation of focused axisymmetric ultrasound beams, J. Acoust. Soc. Am, vol.131, issue.6, pp.481-486, 2012.

T. Kamakura, T. Ishiwata, and K. Matsuda, model equation for strongly focused finite-amplitude sound beams, J. Acoust. Soc. Am, vol.107, issue.6, pp.3035-3046, 2000.

. Westervelt, parametric acoustic array, J. Acoust. Soc. Am, vol.35, issue.4, pp.535-537, 1965.

I. M. Hallaj and R. O. Cleveland, FdTd simulation of finite-amplitude pressure and temperature fields for biomedical ultrasound, J. Acoust. Soc. Am, vol.105, issue.5, pp.7-12, 1999.

, acoustical finite-difference time-domain simulation in a quasi-cartesian grid, J. Acoust. Soc. Am, vol.95, issue.5, pp.2313-2319, 1994.

. Jing, G. T. Tao, and . Clement, Evaluation of a wave-vector-frequency-domain method for nonlinear wave propagation, J. Acoust. Soc. Am, vol.129, issue.1, pp.32-46, 2011.

W. Karamalis, N. Wein, and . Navab, Fast ultrasound image simulation using the Westervelt equation, Medical Image Computing and Computer Assisted Intervention-MICCAI, pp.243-250, 2010.

J. Huang, .. G. Holt, and R. A. Roy, Experimental validation of a tractable numerical model for focused ultrasound heating in flow-through tissue phantoms, J. Acoust. Soc. Am, vol.116, issue.4, pp.2451-2458, 2004.

.. D. Purrington and G. V. Norton, a numerical comparison of the Westervelt equation with viscous attenuation and a causal propagation operator, Math. Comput. Simul, vol.82, issue.7, pp.1287-1297, 2012.

.. W. Connor and K. Hynynen, bio-acoustic thermal lensing and nonlinear propagation in focused ultrasound surgery using large focal spots: a parametric study, Phys. Med. Biol, vol.47, issue.11, pp.1911-1928, 2002.

G. F. Pinton, J. , and G. E. Trahey, a heterogeneous nonlinear attenuating full-wave model of ultrasound, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol.56, issue.3, pp.474-488, 2009.

J. Huijssen and M. D. Verweij, an iterative method for the computation of nonlinear, wide-angle, pulsed acoustic fields of medical diagnostic transducers, J. Acoust. Soc. Am, vol.127, issue.1, pp.33-44, 2010.

I. M. Hallaj and K. Hynynen, simulations of the thermo-acoustic lens effect during focused ultrasound surgery, J. Acoust. Soc. Am, vol.109, issue.5, pp.2245-2253, 2001.

J. H. Mathews and K. D. Fink, Numerical Methods, issue.6, 1999.

G. Cohen and P. Joly, construction and analysis of fourth-order finite difference schemes for the acoustic wave equation in nonhomogeneous media, SIAM J. Numer. Anal, vol.33, issue.4, pp.1266-1302, 1996.

.. F. Hamilton, comparison of three transient solutions for the axial pressure in a focused sound beam, J. Acoust. Soc. Am, vol.92, issue.1, pp.527-532, 1992.

S. Wooh, beam focusing behavior of linear phased arrays, NDT Int, vol.33, issue.3, pp.189-198, 2000.

J. A. Jensen, Field: a program for simulating ultrasound systems, Med. Biol. Eng. Comput, vol.34, pp.351-353, 1996.

K. Testoni, G. Hensel, and . Schmitz, Fast simulation of second harmonic ultrasound fields, Proc. 2009 IEEE Int. Ultrasonics Symp, pp.2394-2397, 2009.

.. D. Steinberg, Principles of Aperture and Array System Design, 1976.