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ABSTRACT
Testing is the primary approach for detecting software defects. A
major challenge faced by testers lies in crafting ecient test suites,
able to detect a maximum number of bugs with manageable eort.
To do so, they rely on coverage criteria, which dene some precise
test objectives to be covered. However, many common criteria spec-
ify a signicant number of objectives that occur to be infeasible
or redundant in practice, like covering dead code or semantically
equal mutants. Such objectives are well-known to be harmful to the
design of test suites, impacting both the eciency and precision of
the tester’s eort. This work introduces a sound and scalable tech-
nique to prune out a signicant part of the infeasible and redundant
objectives produced by a panel of white-box criteria. In a nutshell,
we reduce this task to proving the validity of logical assertions in
the code under test. The technique is implemented in a tool that re-
lies on weakest-precondition calculus and SMT solving for proving
the assertions. The tool is built on top of the Frama-C verication
platform, which we carefully tune for our specic scalability needs.
The experiments reveal that the pruning capabilities of the tool can
reduce the number of targeted test objectives in a program by up
to 27% and scale to real programs of 200K lines, making it possible
to automate a painstaking part of their current testing process.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; • Theory of computation→ Program analysis;
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1 INTRODUCTION
Context. Heretofore, software testing is the primary method for
detecting software defects [2, 42, 44, 66]. It is performed by exe-
cuting the programs under analysis with some inputs, and aims
at nding some unintended (defective) behaviors. In practice, as
the number of possible test inputs is typically enormous, testers
do limit their tests to a manageable but carefully crafted set of
inputs, called a test suite. To build such suites, they rely on so-called
coverage criteria, also known as adequacy or test criteria, which
dene the objectives of testing [2, 66]. In particular, many white-box
criteria have been proposed so far, where the test objectives are
syntactic elements of the code that should be covered by running
the test suite. For example, the condition coverage criterion imposes
to cover all possible outcomes of the boolean conditions appearing
in program decisions, while the mutant coverage criterion requires
to dierentiate the program from a set of its syntactic variants.
Testers need then to design their suite of inputs to cover the cor-
responding test objectives, such as — for the two aforementioned
cases — condition outcomes or mutants to kill.
Problem. White-box testing criteria are purely syntactic and thus
totally blind to the semantics of the program under analysis. As a
consequence, many of the test objectives that they dene may turn
out to be either
(a) infeasible: no input can satisfy them, such as dead code or

equivalent mutants [2], or
(b) duplicate versions of another objective: satised by exactly the

same inputs, such as semantically equal mutants [53], or
(c) subsumed by another objective: satised by every input cover-

ing the other objective [1, 37, 52], such as validity of a condition
logically implied by another one in condition coverage.

We refer to these three situations as polluting test objectives, which
are well-known to be harmful to the testing task [52, 53, 62, 63, 65]
for two main reasons:
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• While (early) software testing theory [66] requires all the cri-
terion objectives to be covered, this seldom reects the actual
practice, which usually relies on test suites covering only a part
of them [23]. This is due to the diculty of generating the appro-
priate test inputs, but also to infeasible test objectives. Indeed,
testers often cannot know whether they fail to cover them be-
cause their test suites are weak or because they are infeasible,
possibly wasting a signicant amount of their test budget trying
to satisfy them.

• As full objective coverage is rarely reached in practice, testers
rely on the ratio of covered objectives to measure the strength
of their test suites. However, the working assumption of this
practice is that all objectives are of equal value. Testing research
demonstrated that this is not true [1, 13, 17, 52], as duplication and
subsumption can make a large number of feasible test objectives
redundant. Such coverable redundant objectives may articially
deate or inate the coverage ratio. This skews the measurement,
which may misestimate test thoroughness and fail to evaluate
correctly the remaining cost to full coverage.

Goal and Challenges.While detecting all polluting test objectives
is undecidable [1, 52], our goal is to provide a technique capable to
identify a signicant part of them. This is a challenging task as it
requires one to perform complex program analyses over large sets
of objectives produced by various criteria. Moreover, duplication
and subsumption should be checked for each pair of objectives, a
priori putting a quadratic penalty over the necessary analyses.

Although many studies have demonstrated the harmful eects of
polluting objectives, to date there is no scalable technique to discard
them. Most related research works (see Tables 1, 2 and Section 8)
focus on the equivalent mutant problem, i.e. the particular instance
of infeasible test objectives for the mutant coverage criterion. These
operate either in dynamic mode, i.e. mutant classication [57, 58],
or in static mode, i.e. Trivial Compiler Equivalence (TCE) [53].
Unfortunately, the dynamic methods are unsound and produce
many false positives [51, 58], while the static one does not deal
with all forms of mutation and cannot detect subsumed mutants
(whereas it handles duplicates in addition to infeasible ones). The
LUncov technique [8] combines two static analyses to prune out
infeasible objectives from a panel of white-box criteria in a generic
way, but faces scalability issues.

Sound Scale Kind of Pollution Criterion
Inf. Dupl. Subs. Genericity

Mutant class. [58] × X X × × ×

TCE [53] X X X X × ×

LUncov [8] X × X × × X

LClean (this work) X X X X X X

Table 1: Comparison with closest research techniques

Analyses Scope Acuteness

TCE [53] built-in compiler interprocedural +optimizations

LUncov [8] value analysis and interprocedural ++weakest-precondition
LClean (this work) weakest-precondition local function +

Table 2: Static analyses available in closest techniques

Proposal.Our intent is to provide a unied, sound and scalable solu-
tion to prune out a signicant part of polluting objectives, including

infeasible but also duplicate and subsumed ones, while handling a
large panel of white-box criteria in a genericmanner. To achieve this,
we propose reducing the problem of nding polluting objectives
for a wide range of criteria to the problem of proving the validity
of logical assertions inside the code under test. These assertions
can then be veried using known verication techniques.

Our approach, called LClean, is the rst one that scales to pro-
grams composed of 200K lines of C code, while handling all types
of polluting test requirements. It is also generic, in the sense that
it covers most of the common code-based test criteria (described
in software testing textbooks [2]) and it is capable of using almost
any state-of-the-art verication technique. In this study, we use
weakest-precondition calculus [21] with SMT solving [18] and iden-
tify 25K polluting test objectives in fourteen C programs.

LClean introduces two acute code analyses that enable focusing
the detection of duplicate and subsumed objectives over a limited
amount of high-hit-rate pairs of objectives. This makes it possible
to detect a signicant number of redundant objectives while avoid-
ing a quadratic penalty in computation time. The LClean tool is
implemented on top of the Frama-C/LTest platform [34, 40], which
features strong conceptual and technical foundations (Section 3).
We specically extend the Frama-C module dedicated to proving
code assertions to make the proposed solution scalable and robust.
Contributions. To sum up, we make the following contributions:
• The LClean approach: a scalable, sound and unied formal tech-
nique (Sections 2 and 4) capable to detect the three kinds of
polluting test objectives (i.e. infeasible, duplicate and subsumed)
for a wide panel of white-box criteria, ranging from condition
coverage to variants of MCDC and weak mutation.

• An open-source prototype tool LClean (Section 5) enacting the
proposed approach. It relies on an industrial-proof formal veri-
cation platform, which we tune for the specic scalability needs
of LClean, yielding a robust multi-core assertion-proving kernel.

• A thorough evaluation (Sections 6 and 7) assessing
(a) the scalability and detection power of LClean for three types

of polluting objectives and four test criteria – pruning out up
to 27% of the objectives in C les up to 200K lines,

(b) the impact of using a multi-core kernel and tailored verication
libraries on the required computation time (yielding a speedup
of approximately 45×), and

(c) that, compared to the existing methods, LClean prunes out four
times more objectives than LUncov [8] in about half as much
time, it can be one order of magnitude faster than (unsound)
dynamic identication of (likely) polluting objectives, and it
detects half more duplicate objectives than TCE, while being
complementary to it.

Potential Impact. Infeasible test objectives have been recognized
as a main cost factor of the testing process [62, 63, 65]. By pruning
out a signicant number of themwith LClean, testers could reinvest
the spared cost in targeting full coverage of the remaining objectives.
This would make testing more ecient, as most faults are found
within high levels of coverage [22]. Pruning out infeasible test
objectives could also make the most meticulous testing criteria
(e.g. mutation testing) less expensive and thus more acceptable
in industry [53]. Furthermore, getting rid of redundant objectives
should provide testers with more accurate quality evaluations of
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1 // given three sides x,y,z of a valid triangle, computes

2 // its type as: 0 scalene, 1 isosceles, 2 equilateral

3 int type = 0;

4 // l1: x == y && y == z; (DC) l2: x != y || y != z; (DC)

5 // l3: x == y; (CC) l4: x != y; (CC)

6 if( x == y && y == z ){

7 type = type + 1;

8 }

9 // l5: x==y || y==z || x==z; (DC) l6: x!=y && y!=z && x!=z; (DC)

10 // l7: x == y; (CC) l8: x != y; (CC)

11 // l9: x!=y && y==z && x==z; (MCC) l10: x==y && y!=z && x==z;(MCC)

12 if( x == y || y == z || x == z ){

13 // l11: type + 1 != type + 2; (WM) l12: type + 1 != type; (WM)

14 // l13: type + 1 != -type + 1; (WM) l14: type + 1 != 1; (WM)

15 type = type + 1;

16 }

Figure 1: Example of a small C program with test objectives

their test suites and also result in sounder comparisons of test
generation techniques [52].

2 MOTIVATING EXAMPLE
Figure 1 shows a small C program inspired by the classic triangle
example [43]. Given three integers x , y, z supposed to be the sides
of a valid triangle, it sets variable type according to the type of
the triangle: equilateral (type = 2), isosceles (type = 1) or scalene
(type = 0). Figure 1 also illustrates fourteen test objectives from
common test criteria labelled from l1 to l14. l1 and l2 require the
test suite to cover both possible decisions (or branches) of the
conditional at line 6. For example, covering l2 means to nd test
data such that, during test execution, the location of l2 is reached
and the condition x != y || y != z is true at this location,
which ensures to execute the else branch. Similarly, l5 and l6 require
the tests to cover both decisions at line 12. These four objectives are
specied by the Decision Coverage (DC) criterion for this program.
l3 and l4 (resp., l7 and l8) require the tests to cover both truth values
of the rst condition in the compound condition on line 6 (resp., line
12). They are imposed by Condition Coverage (CC) – the similar test
objectives imposed by CC for the other conditions are not shown
to improve readability. l9 and l10 provide examples of objectives
from Multiple Condition Coverage (MCC) for conditional at line 12.
MCC requires the tests to cover all combinations of truth values of
conditions. Finally, objectives l11 to l14 encode some Weak Mutants
(WM) of the assignment on line 15 (see Bardin et al. [9, Theorem 2]
for more detail).

We can easily notice that l9 and l10 put unsatisable constraints
over x , y and z. They are thus infeasible objectives and trying to
cover themwould be a waste of time. Other objectives are duplicates,
denoted by⇔: they are always covered (i.e. reached and satised)
simultaneously. We obviously have l3 ⇔ l7 and l4 ⇔ l8 since the
values of x and y do not change in-between. Although syntactically
dierent, l13 and l14 are also duplicates, as they are always reached
together (we call them co-reached objectives) and satised if and
only if type , 0. Finally, we refer to objectives like l11 and l12 as
being trivial duplicates: they are co-reached, and always satised
as soon as reached. While we do not have l1 ⇔ l5, covering l1
necessarily implies covering l5, that is, l1 subsumes l5, denoted
l1 ⇒ l5. Other examples of subsumed objectives can be found,
like l6 ⇒ l2. Duplicate and subsumed objectives are redundant
objectives that can skew the measurement of test suite strength,
as it should be provided by the test coverage ratio. For example,

considering the objectives from the DC criterion, the test suite
composed of the single test (x = 1,y = 2, z = 1) covers l2 and l5 but
not l1 and l6, which implies a medium coverage ratio of 50%. The
tester may be interested to know the achieved level of coverage
without counting duplicate or subsumed objectives. Here, l2 and l5
are actually subsumed by l1 and l6. If the subsumed objectives are
removed, the coverage ratio falls down to 0%. Discarding redundant
objectives provides a better measurement of how far testers are
from building an ecient test suite, only with the necessary inputs
for covering the non-redundant objectives (l1 and l6 in this case).

The main purpose of this paper is to provide a lightweight yet
powerful technique for pruning out infeasible, duplicate and sub-
sumed test objectives. To do so, our approach rst focuses on in-
feasible objectives. In Figure 1, one can notice, for instance, that
the problem of proving l9 to be infeasible can be reduced to the
problem of proving that a code assertion !(x!=y && y==z
&& x==z) at line 11 will never be violated. Our approach then
delegates this proof for each objective to a dedicated verication
tool. While infeasibility should be checked once per objective, dupli-
cation and subsumption require one to analyse all the possible pairs.
To avoid quadratic complexity, we focus on detecting duplicate
and subsumed pairs only among the objectives that belong to the
same sequential block of code, with no possible interruption of the
control ow (with goto, break, . . . ) in-between. By construction,
the objectives in these groups are always co-reached. In Figure 1,
l1–l10 and l11–l14 are two examples of such groups. Examples of
duplicate and subsumed objectives within these groups include
l3 ⇔ l7, l4 ⇔ l8, l11 ⇔ l12, l13 ⇔ l14, l1 ⇒ l5 and l6 ⇒ l2. We call
them block-duplicate and block-subsumed objectives. On the other
hand, l1 and l13 are duplicate (at line 14, type is nonzero if and
only if x, y, and z are equal), but this will not be detected by our
approach since those labels are not in the same block.

3 BACKGROUND
3.1 Test Objective Specication with Labels
Given a program P over a vector V of m input variables taking
values in a domain D , D1 × · · · × Dm , a test datum t for P is a
valuation of V , i.e. t ∈ D. A test suite TS ⊆ D is a nite set of test
data. A (nite) execution of P over some t , denoted P(t), is a (nite)
run σ , 〈(loc0, s0), . . . , (locn , sn )〉 where the loci denote successive
(control-)locations of P (≈ statements of the programming language
in which P is written), loc0 refers to the initial program state and
the si denote the successive internal states of P (≈ valuation of all
global and local variables and of all memory-allocated structures)
after the execution of each loci .

A test datum t reaches a location loc at step k with internal state
s , denoted t {k

P (loc, s), if P(t) has the form σ · (loc, s) · ρ where σ
is a partial run of length k . When focusing on reachability, we omit
k and write t {P (loc, s).

Given a test objective c, we write t {P c if test datum t covers c.
We extend the notation for a test suite TS and a set of test objectives
C, writing TS {P C when for any c ∈ C, there exists t ∈ TS such
that t {P c. A (source-code based) coverage criterion C is dened as
a systematic way of deriving a set of test objectives C , C(P) for
any program under test P . A test suite TS satises (or achieves) a
coverage criterion C if TS covers C(P).
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Labels. Labels have been introduced in [9] as a code annotation
language to encode concrete test objectives. Several common cover-
age criteria can be simulated by label coverage, in the sense that for
a given program P and a criterion C, every concrete test objective
from C , C(P) can always be encoded using a corresponding label.

Given a program P , a label ` ∈ LabsP is a pair (loc,φ) where loc
is a location of P and φ is a predicate over the internal state at loc.
There can be several labels dened at a single location, which can
possibly share the same predicate. More concretely, the notion of
labels can be compared to labels in the C language, decorated with
a pure (i.e. side-eect-free) boolean C expression.

We say that a test datum t covers a label ` , (loc,φ) in P , denoted
t

L
{P `, if there is a state s such that t reaches (loc, s) (i.e. t {P

(loc, s)) and s satises φ. An annotated program is a pair 〈P ,L〉
where P is a program and L ⊆ LabsP is a set of labels for P . Given
an annotated program 〈P ,L〉, we say that a test suite TS satises
the label coverage criterion (LC) for 〈P ,L〉, denoted TS L

{ 〈P,L〉 LC,
if TS covers every label of L (i.e. ∀` ∈ L : ∃t ∈ TS : t L

{P `).
Criterion Encoding. Label coverage simulates a coverage criterion
C if any program P can be automatically annotated with a set of
corresponding labels L in such a way that any test suite TS satises
LC for 〈P ,L〉 if and only if TS covers all the concrete test objectives
instantiated from C for P . The main benet of labels is to unify
the treatment of test requirements belonging to dierent classes
of coverage criteria in a transparent way, thanks to the automatic
insertion of labels in the program under test. Indeed, it is shown in
[9] that label coverage can notably simulate basic-block coverage
(BBC), branch coverage (BC), decision coverage (DC), function
coverage (FC), condition coverage (CC), decision condition cov-
erage (DCC), multiple condition coverage (MCC) as well as the
side-eect-free fragment of weak mutations (WM’). The encoding
of GACC comes from [50]. Some examples are given in Figure 1.
Co-reached Labels. We say that location loc is always preceded
by location loc′ if for any test datum t , whenever the execution
P(t) , 〈(loc0, s0), . . . , (locn , sn )〉 passes through location loc at step
k (i.e. loc = lock ) then P(t) also passes through loc′ at some earlier
step k ′ ≤ k (i.e. loc′ = lock ′ ) without passing through loc or loc′
in-between (i.e. at some intermediate step i with k ′ < i < k).
Similarly, loc′ is said to be always followed by location loc if for
any t , whenever the execution P(t) passes through loc′ at step k ′
then P(t) also passes through loc at some later step k ≥ k ′ without
passing through loc or loc′ in-between. Two locations are co-reached
if one of them is always preceded by the other, while the second
one is always followed by the rst one. Note that we exclude the
case when one of locations is traversed several times (e.g. due to a
loop) before being nally followed by the other one. In a sequential
block of code, with no possible interruption of the control ow in-
between (no goto, break, . . . ), all locations are co-reached.We nally
say that two labels are co-reached if their locations are co-reached.

3.2 Polluting Labels
In the remainder of the paper, test objectives will often be expressed
in terms of labels. This work addresses three kinds of polluting
labels: infeasible, duplicate and subsumed. A label ` in P is called
infeasible if there is no test datum t such that t L

{P `. In other
words, it is not possible to reach its location and satisfy its predicate.

We say that a label ` subsumes another label `′ (or `′ is subsumed
by `) in P , denoted ` ⇒ `′, if for any test datum t , if t L

{P ` then
t

L
{P `

′ as well. Finally, two labels ` and `′ are called duplicate1,
denoted ` ⇔ `′, if each of them subsumes the other one. For the
specic case where both labels ` and `′ belong to the same group
of co-reached labels in a block, we call a duplicate (resp., subsumed)
label block-duplicate (resp., block-subsumed).

Notice that if a label ` is infeasible, it subsumes by denition any
other label `′. We call this phenomenon degenerate subsumption. If
`′ is feasible, it should be kept and covered. In this case, the truly
polluting objective is ` rather than `′. That is the reason why it is
necessary to eliminate as many infeasible labels as possible before
pruning out subsumed labels.

3.3 The Frama-C/LTest Platform
Frama-C [34] is an open-source industrial-strength framework ded-
icated to the formal analysis of C programs. It has been successfully
used in several safety and security critical contexts. The tool is
written in OCaml, and represents a very signicant development
(around 150K lines for the kernel and the main plug-ins alone).

Frama-C is based on a small kernel that takes care of providing
an abstract representation of the program under analysis and main-
taining the set of properties that are known about the program state
at each possible execution step. These properties are expressed as
ACSL [11] annotations. On top of the kernel, many plug-ins can
perform various kinds of analysis, and can interact with the kernel
either by indicating that a property ϕ holds, or by asking whether
some other propertyψ is true (in the hope that another plug-in will
be able to validate ϕ later on).

In the context of this paper, we are mainly interested in the
four following (open-source) plug-ins. LAnnotate, LUncov and LRe-
play are part of Frama-C/LTest [7, 40]. LAnnotate annotates the
program with labels according to the selected criterion. LUncov
combines weakest-precondition and value analysis to detect infea-
sible test objectives. LReplay executes a test suite and computes its
coverage ratio.WP is a plug-in implementing weakest-precondition
calculus [10, 28] in order to prove that an ACSL assertion holds.

4 THE LCLEAN APPROACH
The LClean technique involves three main steps (cf. Figure 2) pre-
ceded by a preprocessing phase. The rst step aims at detecting
infeasible label-encoded objectives. The second step targets trivial
block-duplicate labels, while the third step focuses more generally
on block-subsumed and block-duplicate labels.

Given a program P and a coverage criterion C that can be simu-
lated by labels, the preprocessing consists in generating the corre-
sponding labels L. For C programs, this is done by the LAnnotate
plug-in of Frama-C. The LClean approach itself operates on the
annotated program 〈P ,L〉 and marks polluting labels so that they
can be pruned out.

4.1 Step 1: Infeasible Labels
LClean systematically explores 〈P ,L〉 and replaces every label ` ,
(loc,φ) by an assertion assert(!φ), whose predicate is the nega-
tion of the label condition. The resulting assertion-laden code is

1The term equivalent label is not used here to avoid any confusion with the notion of
equivalent mutant, which in mutation testing means infeasible objective.
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Figure 2: Process view of the LClean approach with main steps and substeps

sent to a deductive verication tool designed for proving that the
received program is correct w.r.t. the dened assertions, i.e. that
none of them can be violated during a possible run of the program.
In practice, the verication tool returns the list of the assertions
that it was able to prove correct. Since each assertion is by construc-
tion the negation of a label condition, the corresponding labels are
formally proven to be infeasible, and are marked as so. These marks
will be both used as a nal result of the approach and as internal
information transmitted to the next two steps of LClean. Regarding
Figure 1, LClean indeed detects that l9 and l10 are infeasible.

4.2 Detection of Co-reached Labels
1 void calledOnce () {

2 // l1: φ1
3 code1;

4 }

5 int main ( int i ) {

6 // l2: φ2
7 if (i>0) {

8 // l3: φ3
9 if (i==5) i++;

10 // l4: φ4
11 calledOnce ();

12 if (i==7) exit(0);

13 // l5: φ5
14 i++;

15 // l6: φ6
16 } else {

17 // l7: φ7
18 code2;

19 }

20 return i;

21 }

Figure 3: Co-
reached locations

Prior to Steps 2 and 3, LClean performs
the detection of blocks of co-reached
locations.We illustrate it using the sam-
ple program of Figure 3. First, a basic
syntactic analysis detects six blocks in
the program: the global block of each
of the two functions, the two branches
of the outer conditional (line 7), and the
then branches of the two nested con-
ditionals. Second, a call-graph analysis
discovers that the rst function is only
called once in the whole program, so
that its outer block can be seen as exe-
cuted as a part of the block containing
the function call. The two blocks can
then be merged. Finally, a conservative
control-ow interruption analysis de-
tects that the exit(0); statement at
line 9 may interrupt the control-ow

within the then branch of the outer conditional. The correspond-
ing block is thus split into two blocks, gathering respectively the
statements before and after the exit(0); statement. The identi-
ed blocks enabling us to conclude that there are four groups of
mutually co-reached labels: {l2}, {l3, l4, l1}, {l5, l6} and {l7}.

4.3 Step 2: Trivial Block-Duplicate Labels
As in Step 1, LClean systematically explores 〈P ,L〉 and replaces la-
bels by assertions. Except for the labels marked as infeasible in Step
1, which are simply dropped out, each label ` , (loc,φ) is replaced
by an assertion assert(φ). This time, the predicate is directly the
label condition. The resulting assertion-laden code is sent to the ver-
ication tool. The proven assertions correspond to labels that will
be always satised as soon as their location is reached. Afterwards,
LClean identies among these always-satised-when-reached the
groups of co-reached labels (cf. Section 4.2). The labels within each
of the groups are trivial block-duplicates, and they are marked as be-
ing clones of a single label chosen among them. Again, these marks

will be both nal results and internal information transmitted to
the next step. For the example of Figure 1, LClean will identify that
l11 and l12 are trivial block-duplicate labels. Similarly, if we assume
that all predicates φi are always satisied for the code of Figure 3,
Step 2 detects that l3, l4 and l1 are trivial duplicates, and l5 and l6
are as well. As a subtle optimization, LClean can detect that label
l2 is always executed simultaneously with the outer conditional, so
that l2 will be covered if and only if at least one of the labels l3 and
l6 is covered. l2 can thus be seen as duplicate with the pair (l3,l6)
and is marked as so.

4.4 Step 3: Block-Subsumed Labels
Within each group of co-reached labels, the labels previously de-
tected as infeasible by Step 1 are removed and those detected as
trivial block-duplicates by Step 2 are merged into a single label.
Afterwards, every label `i = (loci ,φi ) remaining in the group
is replaced by a new statement int vli = φi;, which assigns
the value of the label condition to a fresh variable vli . Then, for
each pair (`i , `j )i,j of co-reached labels in the group, the assertion
assert(vli =⇒ vlj ); is inserted at the end of the correspond-
ing block of co-reached locations. If this assertion is proven by
the verication tool, then label `i subsumes label `j . Indeed, their
locations are co-reached, and the proven assertion shows that every
input satisfying φi will also satisfy φ j . As a consequence, every
input that covers `i also covers `j .

The graph of subsumption relations detected in a group of co-
reached labels is then searched for cycles. All labels in a cycle are
actually duplicates and can be marked as mergeable into a single
label. Among the labels that survive such a merging phase, those
that are pointed to by at least one subsumption relation are marked
as subsumed labels. For the example of Figure 1, LClean will identify,
for instance, l1 ⇒ l5, l6 ⇒ l2, l3 ⇔ l7 and l13 ⇔ l14.

4.5 Discussion of LClean Design
Once the third and nal step nished, LClean returns a list of
polluting labels composed of the infeasible ones returned by Step 1
and of the duplicate and subsumed ones returned by Steps 2 and
3. It should be noted that the approach is incremental and that
each of the three main steps can even be run independently of
the others. However, removing infeasible objectives before Steps 2
and 3 is important, as it reduces the risk of returning degenerate
subsumption relations. Similarly, Step 2 detects duplicate labels
that would be identied by Step 3 anyway, but Step 2 nds them at
much lower cost. Indeed, the number of proofs required by Step 2 is
linear in the number of labels as it does not have to consider pairs
of labels. The incremental nature of the approach, coupled with the
fact that assertion proving has become reasonably fast (c.f. Section
6) and that it can be parallelised, as well as performed independently
over stand-alone code units (e.g. C functions), makes a continuous
computation of polluting objectives conceivable during software
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Criterion Labels Block Pairs Function Pairs Program Pairs
CC 27,638 94,042 3,013,940 428,075,244
MCC 30,162 314,274 3,961,004 503,856,852
GACC 27,638 94,042 3,013,940 428,075,244
WM 136,927 2,910 908 80,162,503 8,995,885,473

TOTAL 222,365 3,413,266 90,151,387 10,355,892,813
(×1/15) (×1) (×26) (×3034)

Figure 4: Number of pairs of labels in 14 C programs

development. This could be used for continuous integration to
enforce test suites of specic coverage levels.

The LClean approach might be extended to detect duplicate or
subsumed labels that are not in the same basic block, by generating
more complex assertions that would be ow-sensitive. However,
limiting the analysis to block-duplicate and block-subsumed labels
turns out to be a sweet spot between detection power and com-
putation time. Indeed, Figure 4 details the total number of pairs
of labels for four common criteria in the 14 C programs used in
the evaluation in Section 6 (cf. Figure 6). Figure 4 also presents the
total number of pairs of labels taken inside the same block, inside
the same function or over the whole program. We can see that
focusing the analysis on block pairs enables reducing the number
of necessary proofs by one to four orders of magnitude. At the
same time, it seems reasonable to think that a signicant part of the
duplicate or subsumed labels reside within the same basic block,
as those labels are always executed together and typically describe
test objectives related to closely interconnected syntactic elements
of the program.

5 IMPLEMENTATION
The three steps of the LClean approach are implemented in three
independent open-source Frama-C plug-ins2 (≈5,000 locs in OCaml).
These plug-ins share a common architecture depicted in Figure 5.
It relies on the Frama-C kernel (in black) and features four modules
(in color) performing the dierent substeps of an LClean step. It
receives as input an annotated program 〈P ,L〉, in which labels
have already been generated with plug-in LAnnotate [7] in order
to simulate the coverage criterion of interest. As a starting point,
the program is parsed by the Frama-C kernel, which makes its
abstract syntax tree (AST) available for all the components of the
architecture. We now present the four modules performing the
analysis.
Assertion Generator. The Assertion Generator replaces the labels
in the code by assertions according to the corresponding step (cf.
Section 4). Frama-C primitives are used to explore the AST, locate
the nodes corresponding to labels and replace them by the required
assertions, written in ACSL.
2 Available from http://icse18.marcozzi.net.

Figure 5: Frama-C plug-in implementing one LClean step

RobustMulticore Assertion Prover. The Assertion Prover deals
with proving the assertions introduced in the AST by the Assertion
Generator and relies on the WP plug-in. It is not a simple wrap-
per for WP: the Assertion Prover introduces crucial optimizations
ensuring its scalability and robustness:

• First, it embeds a version of WP that we carefully optimized
for our specic needs, making it capable to prove several
dierent assertions independently in a single run of the
tool. This version factors out a common part of the analysis
(related to the program semantics) that would have to be
repeated uselessly if WP was called once per assertion.

• Second, its multi-core implementation ensures a signicant
speedup. The assertions to be proved are shared among sev-
eral parallel WP instances running on dierent cores.

• Third, the Assertion Prover also guarantees robustness and
adaptability of the process. Indeed, the WP tool can consume
a high amount of memory and computation time when ana-
lyzing a large and complex C function. The Assertion Prover
can smoothly interrupt a WP session when a threshold w.r.t.
the used memory or elapsed time has been reached.

All these improvements to Frama-C/WP have been proven cru-
cial for large-scale experiments (cf. Section 6). A technical descrip-
tion of how they were actually implemented, comparing the opti-
mised and non-optimised source code of the tool, can be found on
the companion website2 of this paper.

Label Status Manager. The Label Status Manager maintains and
gives access to a set of les storing a status for each label. Each label
is identied by a unique integer ID used both in the AST and in the
status les. The status of a label can be a) infeasible, b) duplicate
to another ID (or a pair of IDs), c) subsumed by other IDs, or d)
unknown. The status les are updated by the plug-ins when they
detect that some labels can be marked as polluting. The plug-ins
for Steps 2 and 3 also check the les in order to drop out the labels
marked as polluting during the previous steps.

Block Detector. The detector of blocks of co-reached labels is only
used before Steps 2 and 3. It relies on the Frama-C primitives to
explore the AST and perform the analyses detailed in Section 4.2.
For each block found, it returns the label IDs of co-reached labels
belonging to the block.

6 EXPERIMENTAL EVALUATION
To evaluate experimentally LClean, we consider the following three
research questions:

Research Question 1 (RQ1): Is the approach eective and use-
ful? Especially, (a) Does it identify a signicant number of objectives
from common criteria, all being real polluting objectives? b) Can it
scale to real-world applications, involving many lines of code and
complex language constructs?

Research Question 2 (RQ2): Do the optimizations (Section
5) improve the time performance in a signicant way, impacting
LClean acceptability in practice?

Research Question 3 (RQ3): How does our approach compare
with the closest approaches like LUncov, mutant classication and
TCE, especially in terms of pruning power and time performance?

The experimental artefacts used to answer these questions and
the fully detailed results that we obtained are available on the

http://icse18.marcozzi.net
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companion website2 of the paper. The tool and artefacts have also
been installed in a Linux virtual machine provided on the website
and enabling an easy reproduction of the experiments described
in the next subsections. All these experiments were performed on
a Debian Linux 8 workstation equipped with two Intel Xeon E5-
2660v3 processors, for a total of 20 cores running at 2.6Ghz and
taking advantage of 25MB cache per processor and 264GB RAM.
6.1 RQ1: Eectiveness and Scalability
We consider fourteen C programs of various types and sizes (min:
153 locs, mean: 16,166 locs, max: 196,888 locs) extracted from ve
projects: the seven Siemens programs from [29], four libraries taken
from the cryptographic OpenSSL toolkit [49], the full GNU Zip
compression program [27], the complete Sjeng chess playing IA
application [59] and the entire SQLite relational database manage-
ment system [60]. Every program is annotated successively with the
labels encoding the test objectives of four common coverage crite-
ria: Condition Coverage (CC), Multiple-Condition Coverage (MCC),
General Active Clause Coverage (GACC) andWeakMutations (WM,
with sucient mutation operators [46]). The LClean tool is then
run to detect polluting objectives for each (program,criterion) pair.

For each step of the LClean process, the number of marked
objectives and the computation time are reported in Figure 6. 11%
of the 222,365 labels were marked as polluting in total (min: 4% for
CC/MCC with SQLite, max: 27% for WM in Siemens/printokens.c).
The global ratio of marked polluting objectives is 5% for CC, 5% for
MCC, 6% for GACC and 15% for WM. In total, 13% of the detected
polluting objectives were infeasible, 46% were duplicate (about one
half were marked during Step 2 and the other during Step 3) and 41%
were subsumed. The computation time ranges from 10s for MCC in
Siemens/schedule.c (410 locs and 58 objectives) to ∼69h for WM in
SQLite (197K locs and 90K objectives). Globally, computation time
is split into 10% for Step 1, 8% for Step 2 and 82% for Step 3. While
the computation time is acceptable for a very large majority of
the experiments, Step 3 becomes particularly costly when applied
on the largest programs with the most meticulous criteria. This is
of course due to the fact that this step is quadratic in the number
of labels. While we limit our analysis to block pairs, the number
of resulting proof attempts still gets large for bigger applications,
reaching 1.8M proofs for SQLite and WM (which remains tractable).
Yet, limiting LClean to Steps 1 & 2 still marked many labels and is
much more tractable: on SQLite, it detects 4566 polluting objectives
in only 9h (13692 objectives in 69h for full LClean). Moreover, this
should be compared to the fact that running the SQLite TH3 test
suite3 and computing the mutation score takes many days and that
identifying polluting objectives is a time-consuming manual task
(authors of [58] report 15 minutes per instance). As the SQLlite
developers report3 that they work hard to obtain test suites with a
100% coverage score for dierent criteria, they should immediately
benet from our tool.

Conclusion: These results indicate that LClean is a useful approach
able to detect that a signicant proportion of the test objectives from
various common criteria are polluting ones, even for large and com-
plex real-word applications. In practice, for very large programs and
demanding criteria, LClean can be limited to Steps 1 & 2, keeping a
signicant detection power at a much lower expense.

3https://www.sqlite.org/testing.html

6.2 RQ2: Impact of Optimizations
We repeat the experiments performed in RQ1 for the WM criterion
over the seven Siemens programs, but we deactivate the optimiza-
tions that we implemented in the Assertion Prover of our tool,
namely tailored WP tool and multi-core implementation (Section
5). Figure 7 details the obtained computation times (in logarithmic
scale) for the three steps of the LClean process, considering three
levels of optimizations. At level 0 (oblique-lined blue), the Assertion
Prover uses a single instance of the classical Frama-C/WP running
on a single core. At level 1 (horizontal-lined red), the Assertion
Prover uses 20 instances of the classical version WP running on
20 cores. Level 2 (plain beige) corresponds to the actual version
of the tool used in RQ1, when all the optimizations are activated:
the Assertion Prover uses 20 instances of our tailored version WP
running on 20 cores.

We observe that the total computation time is reduced by a factor
of 2.4 when switching from level 1 to level 2, and that it is reduced
by a factor of 45when switching from level 0 to level 2. These factors
are very similar for all the steps of the LClean process. The analysis
results remained unchanged across the optimization levels.

Conclusion: These results show that our optimizations have a very
signicant impact over the time performance of our tool, making
the experiments on large programs intractable without them. The
measured speedup of 45x has a sensible inuence over the perceived
speed of the tool, improving its acceptability in practice.

6.3 RQ3: LClean vs. Closest Related Works
6.3.1 LUncov. We apply both LUncov [8] and LClean on the

same benchmarks [8]. The measured computation time and detec-
tion power for LUncov and LClean are compared in Figure 8. As
LUncov is limited to infeasibility, we also provide results for Step 1
of LClean. It appears that LClean detects 4.2×more polluting labels
than LUncov in 1.8× less time. When LClean is limited to Step 1, it
detects 1.6× less polluting labels than LUncov, but in 10× less time.

Conclusion: LClean provides a more extensive detection of polluting
objectives than LUncov (especially as it goes beyond infeasibility) at
cheaper cost, thanks to modularity and optimized implementation.

6.3.2 Mutant Classification. The core principle of mutant classi-
cation [57, 58] is to rely on dynamic coverage data to identify (in
an approximated way) polluting mutants. As a comparison between
LClean and such a dynamic pruning principle, Figure 9 reveals that
the time necessary to run a high-coverage test suite (Siemens test
suite), save coverage data and nd likely-polluting objectives can
be one order of magnitude higher than running LClean over the
same test objectives. In the same time, it appeared that many of the
objectives detected in this way were false positives, leading to a 89%
rate of labels to be considered as likely polluting (mainly because
of duplication and subsumption). Actually, while the Siemens test
suite achieves high coverage of standard metrics, it is not built to
reveal dierent coverage behaviours between feasible test objec-
tives. Crafting new test cases to do so would reduce the number of
false positives but even more penalize the computation time.

Conclusion: By relying on lightweight static analyses, LClean pro-
vides a sound and quick detection of a signicant number of both
infeasible and redundant test objectives, while dynamic detection is
expensive and unsound, yielding many false positives even based on
high-quality test suites.

https://www.sqlite.org/testing.html
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Benchmark Labels
STEP 1 STEP 2 STEP 3 TOTAL

Criterionmarked as
time

marked as
time

marked as marked as
time

marked as polluting
time

infeasible duplicate duplicate subsumed ratio %
siemens 654 0 35s 0 38s 2 41 83s 43/654 7% 156s CC

(agg. 7 programs) 666 20 36s 0 40s 0 16 78s 36/666 5% 154s MCC
3210 locs 654 1 37s 0 39s 18 17 77s 36/654 6% 153s GACC

3543 37 114s 123 126s 134 336 723s 630/3543 18% 963s WM
openssl 1022 28 67s 3 67s 4 57 391s 92/1022 9% 525s CC

(agg. 4 programs) 1166 134 77s 0 83s 2 24 294s 160/1166 14% 454s MCC
4596 locs 1022 29 70s 0 81s 30 24 324s 83/1022 8% 475s GACC

4978 252 356s 270 372s 200 326 4214s 1048/4978 21% 5122s WM
gzip 1670 23 149s 5 152s 19 54 578s 101/1670 6% 879s CC

7569 locs 1726 44 170s 5 171s 11 34 628s 94/1726 5% 969s MCC
1670 31 154s 5 156s 43 34 555s 113/1670 7% 865s GACC
12270 267 1038s 942 1210s 542 895 10029s 2646/12270 22% 12277s WM

sjeng 4090 34 351s 15 354s 82 215 798s 346/4090 8% 1503s CC
14070 locs 4746 358 417s 9 436s 34 26 1912s 427/4746 9% 2765s MCC

4090 35 349s 15 353s 82 210 751s 342/4090 8% 1453s GACC
25722 353 5950s 483 4791s 640 706 19586s 2182/25722 8% 31478s WM

sqlite 20202 120 1907s 3 1416s 130 456 4646s 709/20202 4% 7969 CC
196888 locs 21852 394 2295s 0 1902s 178 255 11958s 827/21852 4% 16155 MCC

20202 129 2065s 0 1613s 803 223 4773s 1155/20202 6% 8451 GACC
90240 878 18104s 3688 13571s 2962 6164 216140s 13692/90240 15% 247815s WM

TOTAL 27638 205 2509s 26 2027s 237 823 6496s 1291/27638 5% 3h3m52 CC
226333 locs 30156 950 2995s 14 2632s 225 355 14870s 1544/30156 5% 5h41m37 MCC

27638 225 2675s 20 2242s 976 508 6480s 1729/27638 6% 3h9m57 GACC
136753 1787 25562s 5506 20070s 4478 8427 250692s 20198/136753 15% 82h18m44 WM
222185 3167 9h22m21 5566 7h29m31 5916 10113 77h22m18 24762/222185 11% 94h14m10 TOTAL

Figure 6: Pruning power and computation time of LClean over 14 various "real-world" C programs
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Figure 7: Tool optimization impact (Siemens, WM)

Criterion LUncov LClean (step 1) LClean (all steps)
marked time marked time marked time

CC 4/162 97s 4/162 12s 51/162 46s
MCC 30/203 125s 30/203 15s 51/203 53s
WM 84/905 801s 41/905 75s 385/905 463s

TOTAL 9% 17m3s 6% 1m42s 38% 9m22s
(×1) (×1) (÷1.6) (÷10) (×4.2) (÷1.8)

Figure 8: LUncov [8] vs LClean (benchmarks from [8])

6.3.3 Trivial Compiler Equivalence (TCE). A direct comparison
with TCE [53] is not possible, as TCE aims at identifying strong
mutant equivalences, which are fundamentally dierent from the
structural ones we handle. Killing strong mutants requires indeed
the propagation of the mutated program states to the program out-
puts, which is more complex to formalize [20]. Thus, the only way
to compare the two approaches is to assume that weakly polluting
mutants are also strongly polluting ones. This assumption is true
for the case of equivalent mutants, but not entirely true for the
case of the duplicated mutants. Weakly duplicates mutants might
not be strongly duplicates due to failed mutated state propagation.
However, this is usually quite rare, as most weakly killed mutants
propagate to the program outputs [47]. Nevertheless, we report

these results for demonstrating the capabilities of the approaches
and not for suggesting a way to detect redundant strong mutants.

To perform the comparison, we generated some strong mutants
as well as our corresponding weak ones for the replace program.
We selected only the replace program as our purpose here is to
demonstrate the relative dierences of the approaches: replace is
one of the largest program from the Siemens suite, for which TCE
performs best with respect to equivalent mutant detection [31]. Our
results show that among the 1,579 mutants involved, our approach
detected 103 (7%) as infeasible, while TCE detected 96 (6%). Among
these, 91 are shared, which means that 12 of the infeasible mutants
were only found by our approach and 5 only by TCE. Regarding
duplicated mutants, our approach detected 555 (35%) duplicates,
and TCE detected 352 (22%). 214 were shared, which means that
both techniques together identify 693 (44%) duplicated mutants.

Conclusion: Overall, the results show that our approach outper-
forms TCE in terms of detection power and form a relatively good
complement of it. Moreover, LClean is able to detect subsumption. Yet,
TCE is much more ecient, relying on compiler optimizations.

7 DISCUSSION
7.1 Threats to Validity
Common to all studies relying on empirical data, this one may
be of limited generalizability. To diminish this threat we used, in
addition to the Siemens benchmark programs, four large real-world
applications composed of more than 200 kloc (in total), like SQLite,
and showed that our approach is capable of dealing with many
types of polluting objectives, which no other approach can handle.

Our results might also have been aected by the choice of the
chosen test criteria and in particular the specic mutation operators
we employ. To reduce this threat, we used popular test criteria
(CC, MCC, GACC and WM) included in software testing standards
[55, 56], and employed commonly usedmutation operators included
in recent work [1, 16].
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Criterion
Dynamic Detection LClean

possibly possibly possibly total ratio for time marked as marked as marked as total ratio for timeinfeasible duplicate subsumed possibly polluting infeasible duplicate subsumed marked as polluting
CC 37/654 243/654 230/654 80% (510/654) 3132s 0/654 2/654 41/654 7% (43/654) 156s
MCC 76/666 221/666 215/666 77% (512/666) 3142s 20/666 0/666 16/666 5% (36/666) 154s
GACC 46/654 249/654 212/654 78% (507/654) 3134s 1/654 18/654 17/654 6% (36/654) 153s
WM 386/3543 2327/3543 641/3543 95% (3354/3543) 8399s 37/3543 257/3543 336/3543 18% (630/3543) 963s

TOTAL 545/5517 3040/5517 1298/5517 89% (4883/5517) 4h56m47 58/5517 277/5517 410/5517 14% (745/5517) 23m46s
(×12) (×1)

Figure 9: Dynamic detection of (likely) polluting objectives vs. LClean (Siemens)

The validity of our experimental results have been crosschecked
in several ways. First, we compared our results on the Siemens
benchmark with those of other tools, namely LUncov and TCE. We
knew by design that infeasible objectives detected by LClean should
be detected by LUncov as well, and we checked manually the status
of each duplicate objective reported by LClean and not by TCE. No
issue was reported. Second, we used the existing tests suites for the
Siemens programs as a redundant sanity check, by verifying that ev-
ery objective reported as infeasible (resp. duplicated, subsumed) by
LClean was indeed seen as infeasible (resp. duplicated, subsumed)
when running the test suite. These test suites are extremely thor-
ough [30, 51] and are thus likely to detect errors in LClean. Third,
for larger programs, we picked a random selection of a hundred test
objectives reported as infeasible, duplicated or subsumed by LClean
and manually checked them – this was often straightforward due
to the local reasoning of LClean. All these sanity checks succeeded.

Another class of threats may arise because of the tools that we
used, as it is likely that Frama-C or our implementation are defective.
However, Frama-C is a mature tool with industrial applications in
highly demanding elds (e.g., aeronautics) and thus, it is unlikely
to cause important problems. Moreover, our sanity checks would
have likely spotted such issues.

Finally, other threats may be due to the polluting nature of the
objectives that we target. However, infeasible objectives are a well-
known issue, usually acknowledged in the literature as one of the
most time consuming tasks of the software testing process [2, 38, 53,
58], and redundant objectives have been stated as a major problem
in both past and recent literature [37, 38, 52].

7.2 Limitations
Labels cannot address all white-box criteria. For example, dataow
criteria or full MCDC require additional expressive power [41].
Currently, parts of the infeasibility results from LClean could be
lifted to these classes of objectives. On the other hand, it is unclear
how it could be done for redundancy. Extending the present work
to these criteria is an interesting future work direction.

From a more technical point of view, the detection of subsump-
tion is limited more or less to basic blocks. While it already enables
catching many cases, it might be possible to slightly extend the
search while retaining scalability. In the same vein, the proofs are
performed in LClean on a per function basis. This is a problem as
it is often the case that a given function is always called within
the same context, reducing its possible behaviors. Allowing a lim-
ited degree of contextual analysis (e.g., inlining function callers
and/or callees) should allow to detect more polluting objectives
while retaining scalability.

Finally, as we are facing an undecidable problem, our approach
is sound, but not complete: SMT solvers might answer unknown. In
that case, we may miss polluting objectives.

8 RELATEDWORK
8.1 Infeasible Structural Objectives
Early research studies set the basis for identifying infeasible test
objectives using constraint-based techniques [24, 48]. Outt and
Pan [48] suggested transforming the programs under test as a set
of constraints that encode the test objectives. Then, by solving
these constraints, it is possible to identify infeasible objectives (con-
straints with no solution) and test inputs. Other attempts use model
checking [14, 15] to prove that specic structural test objectives
(given as properties) are infeasible. Unfortunately, constraint-based
techniques, as they require a complete program analysis, have the
usual problems of the large (possibly innite) numbers of involved
paths, imprecise handling of program aliases [35] and the handling
of non-linear constraints [3]. Model-checking faces precision prob-
lems because of the system modelling and scalability issues due
to the large state space involved. On the other hand, we rely on a
modular, hence not too expensive, form of weakest precondition
calculus to ensure scalability.

Perhaps the closest works to ours are the ones by Beckman et
al. [12], Baluda et al. [4–6] and Bardin et al. [8] that rely on weakest
precondition. Beckman et al. proves infeasible program statements,
Baluda et al. infeasible program branches and Bardin et al. infeasible
structural test objectives. Apart from the side dierences (Beck-
man et al. targets formal verication, Baluda et al. applies model
renement in combination to weakest precondition and Bardin et
al. combines weakest precondition with abstract interpretation)
with these works, our main objective here is to identify all types of
polluting test objectives (not only infeasible ones) for real-world
programs in a generic way, i.e. for most of the test criteria, in-
cluding advanced ones such as multiple condition coverage and
weak mutation. Another concern regards the scalability of the pre-
vious methods, which remains unknown under the combinatorial
explosion of test objectives that mutation criteria introduce.

Other techniques attempt to combine infeasible test objectives
detection techniques as a means to speed-up test generation and
rene the coverage metric. Su et al. [61] combines symbolic execu-
tion with model checking to generate data ow test inputs. Baluda
et al. [6] combines backward (using weakest precondition) and for-
ward symbolic analysis to support branch testing and Bardin et al.
[8, 9] combines weakest precondition with dynamic symbolic execu-
tion to support the coverage of structural test objectives. Although
integrating such approaches with ours may result in additional
benets, our main objective here is to demonstrate that lightweight
symbolic analysis techniques, such as weakest precondition, can be
used to eectively tackle the general problem of polluting objectives
for almost all structural test criteria in real-world settings.

Another line of research attempts diminishing the undesirable
eects of infeasible paths in order to speed-up test generation.
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Woodward et al. [64] suggested using some static rules called alle-
gations to identify infeasible paths. Papadakis andMalevris [54] and
Lapierre et al. [39] used a heuristic based on the k-shortest paths
in order to select likely feasible paths. Ngo and Tan [45] proposed
some execution trace patterns that witness likely infeasible paths.
Delahaye et al. [19] showed that infeasibility is caused by the same
reason for many paths and thus, devised a technique that given an
infeasible path can identify other, potentially unexplored paths. All
these methods indirectly support test generation and contrary to
ours do not detect polluting test objectives.

8.2 Equivalent Mutants
Automatically determining mutant equivalence is an instance of the
infeasibility problem and is undecidable [48]. There are numerous
propositions on how to handle this problem, however most of them
have only been evaluated on example programs and thus, their ap-
plicability and eectiveness remains unexplored [31]. Due to space
constraints we discuss the most recent and relevant approaches.
Details regarding the older studies can be found in the recent paper
by Kintis et al. [31], which extensively covers the topic.

One of the most recent methods is the Trivial Compiler Op-
timization (TCE) [31, 53]. The method assumes that equivalent
mutant instances can be identied by comparing the object code
of the mutants. The approach works well (it can identify 30% of
the equivalent mutants) as the compiler optimisations turn mutant
equivalencies into the same object code. In contrast our approach
uses state-of-the-art verication technologies (instead of compilers)
and targets all types of polluting objectives.

Alternative to static heuristics are the dynamic ones. Grun et al.
[26] and Schuler et al. [57] suggested measuring the impact of mu-
tants on the program execution and program invariants in order to
identify likely killable mutants. Schuler and Zeller [58] investigate
a large number of candidate impact measures and found that cover-
age was the most appropriate. Along the same lines Kintis et al. [33]
found that higher order mutants provide more accurate predictions
than coverage. Overall, these approaches are unsound (they provide
many false positives) and they depend on the underlying test suites.
In contrast our approach is sound and static.

8.3 Duplicate and Subsumed Test Objectives
The problems caused by subsumed objectives have been identied
a long time ago. Chusho introduced essential branches [17], or
non-dominated branches [13], as a way to prevent the ination of
the branch coverage score caused by redundant branches. He also
introduced a technique devising graph dominator analysis in order
to identify the essential branches. Bertolino and Marré [13] also
used graph dominator analysis to reduce the number of test cases
needed to cover test objectives and to help estimate the remaining
testing cost. Although these approaches identify the harmful eects
of redundant objectives, they rely on graph analysis, which results
in a large number of false positives. Additionally, they cannot deal
with infeasible objectives.

In the context of mutation testing, Kintis et al. [32] identied
the problem and showed that mutant cost reduction techniques
perform well when using all mutants but not when using non-
redundant ones. Amman et al. [1] introduced minimal mutants and

dynamic mutant subsumption and showed that mutation testing
tools generate a large number of subsumed mutants.

Although mutant redundancies were known from the early days
of mutation testing [37], their harmful eects were only recently
realised. Papadakis et al. [52] performed a large-scale study and
demonstrated that subsumed mutants inate the mutation score
measurement. Overall, Papadakis et al. [52] showed that arbitrary
experiments can result in dierent conclusions when they account
for the cofounding eects of subsumed mutants. Similarly, Kurtz
et al. [37, 38] compared selective mutation testing strategies and
found that they perform poorly when the mutation score is free of
redundant mutants.

Overall, most of the studies identify the problem but fail to deal
with it. One attempt to reduce mutant redundancies uses TCE [31,
53] to remove duplicate mutants. Other attempts are due to Kurtz
et al. [36] who devised dierential symbolic execution to identify
subsumed mutants. Gong et al. [25] used dominator analysis (in the
context of weakmutation) in order to reduce the number of mutants.
Unfortunately, both studies have limited scope as they have been
evaluated only on example programs and their applicability and
scalability remain unknown. Conversely, TCE is applicable and
scalable, but it only targets specic kinds of subsumed mutants
(duplicated ones) and cannot be applied on structural test objectives.

9 CONCLUSION
Software testing is the primary method for detecting software de-
fects. In that context, polluting test objectives are well-known to
be harmful to the testing process, potentially wasting the tester’s
eorts and misleading them on the quality of their test suites. We
have presented LClean, the only approach to date that handles in a
unied way the detection of (the three kinds of) polluting objectives
for a large set of common criteria, together with a dedicated (open-
source) tool able to prune out such polluting objectives. LClean
reduces the problem of detecting polluting objectives to the problem
of proving assertions in the tested code. The tool relies on weakest-
precondition calculus and SMT solving to prove these assertions. It
is built on top of the industry-proof Frama-C verication platform,
specically tuned to our scalability needs. Experiments show that
LClean provides a useful, sound, scalable and adaptable means for
helping testers to target high levels of coverage (where most faults
are detected) and to evaluate more accurately the strength of their
test suites (as well as of the tools possibly used to generate them).
It could immediately benet to all application developers that aim
at specic test suite coverage levels in their current testing process,
like for example in the well-known SQLite database management
system. A promising direction for future work is the extension of
LClean to the few remaining unsupported classes of test objectives,
like data-ow criteria.
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