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� Ideal model provides reliable SoC for any battery type and cycling condition, online.
� None of the existing estimation methods offer an ideal SoC model.
� Novel classification facilitates the identification of to-be improved aspects.
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� Machine learning online techniques adapt the model's parameters when a drift occurs.
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a b s t r a c t

An efficient estimation of the State of Charge (SoC) of an electrical battery in a real-time context is
essential for the development of an intelligent management of the battery energy. The main performance
limitations of a SoC estimator originate in limited Battery Management System hardware resources as
well as in the battery behavior cross-dependence on the battery chemistry and its cycling conditions.
This paper presents a review of methods and models used for SoC estimation and discusses their concept,
adaptability and performances in real-time applications. It introduces a novel classification of SoC esti-
mation methods to facilitate the identification of aspects to be improved to create an ideal SoC model. An
ideal model is defined as the model that provides a reliable SoC for any battery type and cycling con-
dition, online. The benefits of the machine learning methods in providing an online adaptive SoC esti-
mator are thoroughly detailed. Remaining challenges are specified, through which the characteristics of
an ideal model can emerge.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

At present time and in the foreseeable future, electrical batteries
will continue to be used in real-time applications such as cell
phones and laptops, hybrid and electrical vehicles, as well as in non
real-time applications like energy storage systems.

The battery state of charge (SoC) is essential to calculate the
autonomy and the available energy of the battery. An accurate SoC
is fundamental to obtain an efficient control strategy to manage
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energy, as well as to guarantee a safe utilization of the battery by
preventing under or over-charge that may lead to permanent
damage. Energy management also plays a significant role in
extending and optimizing the lifetime of the battery.

The battery being a complex electrochemical system, neither its
remaining capacity nor its SoC can be directly measured. In addi-
tion, battery behavior depends on its utilization conditions like
current profile, ambient temperature and state of health. Therefore
one needs to develop a SoC estimation method, reliable and
adaptable for real-time applications.

Two difficulties constrain the performances of a real-time SoC
estimator. The first comes from the limited storage capacity and
calculation resources of the Battery Management System (BMS).
The second comes from the fact that the battery behavior depends
on its technology and the cycling conditions.

Hence, we point out the need for an efficient model able to
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estimate the SoC of any battery, regardless of its technology, under
any cycling conditions in real-time contexts and applications. Such
a model will be referred to hereafter as “ideal SoC estimator”.

By taking a closer look at the existing methods, it is clear that
none possess the characteristics of this ideal SoC estimator. In order
to obtain it, a suitable approach must be identified among the large
number of existing ones. Thus this identification can be achieved
through a comprehensive classification of existing methods.

The SoC estimation methods can be classified with respect to
different criteria. The first one is the nature of the input variables,
either measured or estimated. The second one is the type of the SoC
estimation model, which is a relationship between the input vari-
ables and SoC: physical, electrochemical or statistical regression
model. The third criterion deals with the temporal dimension:
static methods like those based on SoC�OCV lookup tables and
methods able to provide a real-time SoC estimate. Also themethods
can be classified according to the battery technology: Li-ion, Ni-
MH, Lead-acid and so on. Finally, the classification can be made
based on the mathematical tools used by the estimation method:
Kalman filter, artificial neural network, fuzzy logic, etc. However it
is important to distinguish between the tools applied to the SoC
estimation and those used to estimate the input variables like OCV
and electrical impedance. Indeed, the more the classification
criteria are relevant, the more easily we can identify the methods
that can be improved in order to provide an ideal SoC estimator and
flesh out new ways of developing it.

Several reviews of the existing SoC estimation methods are
available in the literature. The authors of [1e4] give an overview of
the methods without classifying them. The drawbacks and advan-
tages of each method are presented by the authors, but this is not
sufficient to provide an exhaustive and well structured vision on
the path to be followed to develop an ideal SoC estimator. Pop et al.
[5] give a chronological review of the estimation methods before
classifying them under three categories: direct measurement
methods, book-keeping systems that involve basic and modified
Ah-counting, and adaptive systems which are supposed to be self-
designed and to adjust automatically following the battery
agingaging and online changes in battery and user's behavior.
Kalman filter, artificial neural network and fuzzy logic approaches
were allocated to this category, but the authors acknowledge that
these methods have some important limits and cannot be consid-
ered as adaptive to all cycling conditions.

Chang [6] gives a similar classificationwhile adding to it a fourth
category of hybrid methods, each corresponding to a combination
of the first three categories.

Hence the classification of Pop [5] and Chang [6] doesn't make a
distinction between the nature of SoC models and input variables,
focusing the attention on the temporal and technological criteria.

Subsequently, the above classifications of the SoC estimation
methods does not strictly abide by all earlier mentioned criteria,
thus rendering difficult the careful examination of the aspects to be
improved.

In this paper we introduce a novel classification of the SoC
estimation methods based on their concept, their adaptability and
their performances in real-time applications.

This novel classification shows the importance of machine
learning methods in providing an ideal SoC estimator. This esti-
mator is capable of providing precise SoC values in real-time con-
figurations, and automatically adapts to the evolution of the battery
behavior, all of this while being fully independent of the battery
technology.

The rest of the paper is organized as follows. Section 2 recalls the
definition of the battery state of charge and addresses the limita-
tions of the classical definition. Section 3 introduces a novel clas-
sification of the existing SoC estimationmethods. Section 4 gives an
analysis of the most important aspects of these existing methods
and study their ability to become a generalized SoC estimation
method. Before concluding, a discussion of the characteristics of an
ideal SoC estimator and the benefits of amachine learning approach
in providing this ideal SoC estimator are conducted in Section 5. The
conclusion sums up the findings of this paper and the challenges
that remain to be addressed.

2. Battery state of charge

2.1. Definition of the state of charge

The state of charge of a battery is defined as the ratio between
the available capacity and the reference capacity, which is the
maximum capacity that can be withdrawn from the fully charged
battery under reference conditions. The reference conditions are
generally a constant current rate and a specific ambient tempera-
ture. A battery being a chemical energy storage system, there is no
sensor that directly measures. These reference and available ca-
pacities must be calculated.

2.2. Challenges in estimating the battery capacity

One way to compute the battery capacity is the “discharge test”.
It consists of discharging the battery under reference conditions to
reach the end of discharge criterion, i.e. the cutoff voltage.

However the discharge test cannot be applied in real-time
application, as well as in off-line application as it leads to a loss
of energy. The state of charge can be calculated based on the Ah-
counting equation:

SoCt ¼ SoCt0 þ

Z t

t0
It dt

Cref
(1)

where SoCt0 is the initial SoC, I the algebraic current measurement:
positive for a charge current and negative for a discharge current
and Cref the reference capacity. A numerical implementation re-
quires a temporal discretization, and then the SoC is calculated
using the following formula:

SoCt ¼ SoCt�Dt þ It � Dt
Cref

; (2)

where Dt is the sampling interval, which can be constant or vari-
able. It is clear that the precision of this method depends on the
accuracy of the current sensor as well as on the sampling interval.

Nevertheless, the reference capacity is not constant during the
battery charge/discharge; it depends on the state of health and the
cycling conditions like the current profile and the ambient tem-
perature. In a real-time context, the cycling conditions are uncon-
trolled as they depend on the user's behavior, weather conditions,
road conditions, etc. Accordingly, in some situations, the state of
charge can be lower than 0 or higher than 100. The establishment of
a deterministic function to provide a reliable value of the reference
capacity is a challenging problem.

3. Novel classification of the SoC estimation methods

From a global point of view every estimation method is char-
acterized by its input variables, the SoC estimation model and the
type of the SoC estimation processing, see Fig. 1.

The input variables can be either directly measured by a sensor,
or estimated through a physical, electrochemical or statistical



Fig. 1. Novel generalized classification of the SoC estimation methods based on the type of the SoC model, the nature of the input variables and parameters and the processing type.
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regression model. The current is generally measured online. How-
ever, the OCV can be measured offline as well as be estimated on-
line. Thereby the specification of the type of input variables is the
first step when determining if a SoC estimation method can be
improved to become ideal.

There are three types of SoC estimationmodels: a lookup table, a
physical or a statistical regression model. The lookup table repre-
sents a direct relation between the SoC and a measured physical
quantity like the OCV, internal impedance and electrolyte density.
The physical model is based on the SoC definition; we can identify
essentially two physical models: the macroscopic model where the
SoC is calculated using Ah-counting and the microscopic model
where the SoC is defined as the ratio between available and
maximum concentration of active material in the anode. The sta-
tistical regression model can be a linear or non-linear relationship
between the SoC and the input variables and does not necessarily
have a physical interpretation. The type of the SoC model is the
most important classification criterion, it is important not to
confuse the SoC model with the models used to estimate other
battery variables.

Finally, the SoC estimation methods can be classified by the type
of processing: open- and closed-loop processing. The first one is
based only on a SoC estimationmodel. The latter takes into account,
in addition to the SoC estimation model, an estimation model for
other battery variables. We consider that the use of a lookup table
for the SoC estimation is not related to any category.

In the rest of this paper we present a review of methods orga-
nized in five subsections: the improved Ah-counting methods, the
methods based on directly measured input variables, the methods
based on inputs estimated with physical models, the methods
based on inputs estimated with electrochemical models and the
SoC estimation based on the machine learning techniques. There
could as many families and/or sections as there are combinations of
types of input variables, SoC models, and processing methods, see
Fig. 1. We could have comprehensively listed all existing and/or
possible families; and allocated a section of the article to each
family. However, this leads to a size disparity between the sections;
some parts would even be empty. Consequently we have structured
the sections, except for Ah-counting, according to the type of the
models of input variables as listed above. As a reading aid, at the
beginning of each section, we have introduced a table summarizing
the novel classification characteristics of the presented SoC esti-
mation methods. A list of abbreviations and nomenclatures used in
the paper is provided in Table 1.
4. State of charge estimation methods

4.1. Improved Ah-counting

The SoC definition given by (2) offers a generic SoC estimation
method, called Ampere hour counting (Ah-counting), suitable for
all battery types and used as a reference method for the evaluation
of the performance of any other estimation method. Indeed given a
reference capacity this method only requires a continuous measure
of the current. This optimizes the volume of information exchanged
between the battery and BMS and reduces the allocated memory
space as well as the calculation time.

Despite its apparent simplicity, this method holds a number of
limitations. Some of them have been successfully overcame, but
some remain unsolved largely because the method does not
consider the complexity of the electrochemical system. Below we
discuss the sources of the imprecisions of model (2) and the im-
provements that were brought to it until now.

4.1.1. Calculation of SoCt0
The Ah-counting approach supposes that the initial value of the

state of charge SoCt0 is known, but even if the SoC is equal to 100%
for a fully charged battery, and to 0% for a fully discharged battery,
questions remain about the initial state of charge of a partially
charged battery. Wang et al. [7] use a Kalman filter to estimate
SoCt0 . After a long rest period, SoCt0 can also be estimated using a
lookup table establishing a link between the open circuit voltage
and SoC [8].

4.1.2. Current leakages in rest period
During the rest period, secondary reactions lead to current

leakages and therefore reduce the remaining capacity. This phe-
nomenon is known as self-discharge [9e11]. The rate of the self-
discharge depends on the duration of the rest period, ambient
temperature, state of charge and state of health [12,13]. The Ah-
counting method does not take it into account and the SoC re-
mains constant at zero current. Wang et al. [7] establish a linear
relationship between the rate of the self-discharge and the rest
period.

4.1.3. Coulombic efficiency
Undesired reactions, which lead to current loss, can also

consume or produce charge at either the positive or negative
electrode. The Coulombic efficiency measures the delivered/with-
drawn current loss [14]. However its value depends essentially on



Table 1
List of abbreviations and nomenclatures used in the paper.

Abbreviations& nomenclatures

SoC State of Charge
OCV Open Circuit Voltage
BMS Battery Management System
EIS Electrical Impedance Spectroscopy
EKF Extended Kalman Filter
SVR Support Vector Regression
ANN Artificial Neural Network
It Battery current at time t
Ut Battery voltage at time t
T Ambient temperature
Z Battery internal impedance
R Battery internal resistance
Cref Nominal battery capacity
Ah Ampere hour
h Coulombic efficiency
Dt Sampling interval
xt State vector of a Kalman Filter
yt Observation vector of a Kalman Filter
ut Input vector of a Kalman Filter
zt Output vector of a machine learning model
rt Input vector of a machine learning model
w Parameters of a machine learning model
D Training dataset
k(,) Kernel function
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ambient temperature, current rate, state of health and even on the
SoC of the battery [15]. The establishment of a deterministic func-
tion to provide the Coulombic efficiency remains a challenging
problem. For an accurate estimation of the SoC, most algorithms
include the Coulombic efficiency h in the formula of Ah-counting:

SoCt ¼ SoCt�Dt þ h$It$Dt
Cref

(3)

Usually two values of the Coulombic efficiency are considered:
hc for the charge and hd for the discharge [7,16,17]. Ng et al. [8] use a
variable Coulombic efficiency depending on the SoC. Alzieu et al.
[18] integrate the influence of the ambient temperature and the
current rate on the Coulombic efficiency: h¼ KDT,KDIwhere KDTand
KDI represent the influence of the variation of the temperature DT
and the current DI respectively. Malkhandi [19] uses a fuzzy logic
model to estimate the Coulombic efficiency based on current and
temperature values.

4.1.4. Error of the current sensor
When integrating the current over time the Ah-counting does

not use a feedback loop to offset an eventual estimation error. From
a control theory perspective, the system is referred to as “open”:
the estimation error is accumulated over time and increases the
bias of the estimator. This error is mainly a result of the inaccuracy
of the current measurement which can be caused by the sensor
error and the sampling frequency.

Calibration points are often used to adjust the estimated SoC.
Hence, these points are available for specific states of the battery:
0% for a fully discharged battery, 100% for a fully charged battery
and the SoC estimated by an open circuit voltage after a long rest
period. However these calibration points are seldom available in a
real-time application where the battery is often partially charged
and no OCV measurement is available.

4.1.5. Variation of the battery capacity
The available capacity as well as the reference capacity change

during the charge/discharge of the battery according to the current
profile, temperature and state of health [20,21]. Gaddam et al. [22]
use a fuzzy logic system to estimate the reference capacity based on
the current rate and ambient temperature.

Accordingly the alteration of the available capacity affects not
only the remaining capacity at instant t but also the one at t�1. This
is a fundamental issue in the Ah-counting method considering that
it is based on a recursive computation.

In summary, Ah-counting is a simple generic model suitable for
all battery technologies and can be used in real-time applications.
However this model does not take into account the calculation of
the initial state of charge, the precision of the current sensor, the
Coulombic efficiency or the variation of the reference capacity.
Multiple improvements are developed to overcome these diffi-
culties. Nevertheless they remain limited, especially for online SoC
estimation, due to the complexity of the battery behavior which
depends strongly on uncontrolled cycling conditions.

4.2. SoC estimator based on directly measured input variables

Another concept of SoC estimation is based on a direct relation
between the SoC and a measured physical quantity. This relation
can be described using a lookup table or a statistical regression
model. Unlike Ah-counting this relation is not generic and depends
on the battery technology.

A lookup table is a one-to-one relation obtained in an empirical
way. Several laboratory experiments need to be realized in order to
construct one table; various tables are required depending on the
cycling conditions and the inherent battery properties. Here, an
accurate indication of the SoC is determined by the precision of the
measured physical quantity and by the quality and wealth of the
lookup tables.

In the following we describe and analyze the SoC estimation
methods taking as input variables ameasure of open circuit voltage,
impedance Z or other measurements specific to battery technolo-
gies. Table 2 summarizes these methods according to the novel
classification, see Fig. 1.
4.2.1. Open circuit voltage measurement
The term voltage refers to the electrical potential difference

between the two electrodes of an electrochemical cell. The open
circuit voltage (OCV) is the measured terminal voltage for zero
current [23]. Thus it gives an indication of the available energy and
is directly proportional to the SoC [24e26]. Kelrich et al. [27] use
OCV and temperature measurements as input parameters for a
lookup table to obtain the SoC of the battery.

However the lookup table utilization/application remains
limited due to several reasons. First, OCV cannot be directly
measured in a real-time application and an accurate value of OCV
requires the battery to rest an extended period of time [28]. Some
techniques can be used to overcome the problem of the rest
duration like the interpolation of the OCV data during rest time to
get a higher resolution of the OCV curve, and the extrapolation of
the relaxation behavior using a battery modeling [28]. The OCV/SoC
relationship presents a hysteresis behavior according to the charge/
discharge history even if the rest time is very long. This behavior is
well known but needs specific experimental tests to be deeply
characterized [29,30]. Second, this relation is not generic; it de-
pends on the battery technology. For example, there is a slight
change in a LiFePO4 battery OCV given SoC2(20,80). A small error
on OCV induces a large error on the estimated SoC. Moreover the
OCV/SoC relationship is not constant: it is influenced by the state of
health of the battery [31] and temperature [27].

Hence, to cover all conditions, a lot of lookup tables should be
built. This requires a lot of laboratory experiments and a large
memory to store all these tables in a real-time application.



Table 2
Main classification criteria for SoC estimator based on directly measured input
variables.

Offline measured input variables OCV, Z, U, electrolyte density
SoC estimation model Lookup table, statistical model
Other models e

Type of processing e
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4.2.2. Internal impedance measurements
The electrochemical impedance of a battery characterizes its

dynamic behavior, that is, its response to an excitation of a small
amplitude [32,33]. We distinguish two categories of methods for
impedance measurement: active and passive methods.

The electrical impedance spectroscopy (EIS), the major example
of the active methods, involves an excitation of the battery with a
small AC signal over a wide frequency range typically from 10 kHz
to 10�5 Hz. This frequency range depends on the battery chemistry
[32,34,35]. This measurement method cannot be used in a real-
time application due to hardware complexity and high cost. In
addition, the response of the battery is strongly influenced by the
temperature [36].

The passive methods search an impulse in the current profile.
Once found, this current impulse and the corresponding output
voltage are used to estimate the internal impedance. These
methods are not reliable since a perfect impulse can hardly be
detected in real conditions.

A review of the investigations for the applicability of impedance
measurements as a test for the SoC of lead-acid and nickel-
ecadmium batteries is detailed by Huet [37]. These methods
attempt to establish a relationship between the real and/or imag-
inary impedance components and the SoC. Thereby the developed
models are not generic and remain specific to a particular tech-
nology. Huet concluded that the impedance measurement is
strongly influenced by the temperature, particularly at low fre-
quencies. This technique seems to be more suitable for lead-acid
than nickelecadmium batteries. Indeed for nickelecadmium bat-
teries, the ohmic resistance variations with the SoC are much lower
than variations for lead-acid batteries.

Salkind et al. [38] use a fuzzy logic model to establish a rela-
tionship between the SoC and the impedance of the battery derived
from impedance spectroscopy measurements at different fre-
quencies. Thus the fuzzy logic model limits the effect of the unre-
liability of the impedance measurement.

Hence the measured values of the impedance depend greatly on
the measurement method and they are sensitive to measurement
conditions. Furthermore, the type of relationship between this
impedance and the SoC is not generic for all battery technologies
and difficult to establish in real-time contexts.
Table 3
Main classification criteria for SoC obtained from inputs estimated using physical
models.

Estimated input variables U OCV

SoC estimation model Ah-counting Lookup table, regression model
Other models Physical model of U Physical model of OCV
Type of processing Closed-loop Closed & open-loop
4.2.3. Other measurements
Some techniques are applicable for particular battery technol-

ogies. For example, the lead-acid battery presents a particular
behavior called “coup de fouet” which is the initial voltage drop
when discharging a fully charged battery [39]. It can be used to
calibrate the SoC to 100% and provides information regarding the
state of health of the battery.

A second specific method for the lead-acid battery is based on a
direct relation between the SoC and the electrolyte density mea-
surement. However this method is very sensitive to the tempera-
ture and the impurities present in the electrolyte [1].

All of the methods mentioned and analyzed above need a direct
measurement of a physical quantity inherent to the battery to es-
timate the state of charge via a lookup table, statistical regression
model or fuzzy logic model. In addition, the experimental
conditions should be controlled and known. Nevertheless, their
measurement is difficult if not impossible to carry out especially in
a real-time context. To get around this difficulty, a chosen physical
quantity can be estimated by means of a physical, electrochemical
or statistical regression model, see Fig. 1.
4.3. SoC obtained from inputs estimated using physical models

The estimation of the input variables is usually based on a
physical representation of the battery behavior. It consists of
establishing a relationship between an input variable, such as the
output voltage or the OCV, and the battery model parameters
derived from its physical representation.

Two cases are generally considered by the SoC estimation
methods when using estimated input variables. In the first one an
input variable can be estimated by a physical model as well as
measured in real-time conditions. The difference between the
estimated and measured input variable is then used to improve the
SoC estimation model via a closed-loop processing. In the second
case, an input variable cannot be directly measured but is estimated
in real-time by a physical model. The SoC is then estimated via a
predefined relationship (lookup table or regression model) using
the input variable.

In the rest of this Section we present several SoC estimation
methods where the estimated input variables are either U or OCV.
Table 3 summarizes the variables and models involved in these
methods according to the novel classification, see Fig. 1.
4.3.1. Voltage estimation
The output voltage can be measured and estimated at the same

time. This is why this input variable is very suitable for a closed-
loop processing: the error between the measured and estimated
output voltage is used in real-time to adjust the SoC obtained by the
Ah-counting method. Several battery voltage models are described
below, along with examples of closed-loop processing techniques,
such as introducing a controller or a Kalman Filter.

Codeca et al. [40] improve the Ah-counting method using a
controller. Fig. 2 shows a flow diagram of the SoC adjustment using
a controller. This is described in the following. The voltage of the
battery is estimated using the 2nd order Randle model. The dif-
ference between the estimated bUt and the measured Ut voltage is
then integrated in the feedback of the controller in order to adjust
the Ah-counting value SboCAH

t :

SboCt ¼ SboCAH
t þ KpðUt � bUtÞ; (4)

where Kp is the controller parameter.
More efficient than a controller, a Kalman filter takes into ac-

count the imprecisions of the voltage measurement and those of
the SoC modeling. The Kalman filter estimates a dynamical unob-
served state xt given a suitable observed variable yt:

xtþ1 ¼ A$xt þ B$ut þwt ðState modelÞ



Fig. 2. Concept of SoC adjustment through a controller.

Fig. 3. SoC estimator through an extended Kalman filter, where It is the input ut, SoCt
the state variable xt and Ut the observed variable yt.
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yt ¼ C$xt þ D$ut þ εt ðObservation modelÞ

where A and B represent the transition and observation matrix
respectively, C and D model the influence of the input ut on xt and
yt; and wt and εt are white-noise processes used to model the error
of the state and observation equations respectively.

The Kalman filter is an optimal estimator only if the state and
observation models are linear and all noises are Gaussian (see Ref.
[41] for more information). When one of these models is non-linear
one needs to use the Extended Kalman Filter (EKF). This approach is
adopted despite its sub-optimal results.

The performance and efficiency of an EKF shall be determined
by the reliability of the state and observation models. Fig. 3 shows a
flow diagram of the SoC estimation using an EKF. This is described
in the following. The unknown variable xt is predicted using the
state model given through observation at t�1. The observation at t
is then predicted using the observation model, based on the pre-
dicted value bxt . Thus bxt is adjusted based on the gap between the
predicted value and the measured value of the observation. The
power of the EKF is that this gap is weighed by an adaptive Kalman
gain that depends on the correlation between the observed and the
unknown variables.

In battery applications, the state and observation models
depend on the battery model itself. Chen and Lin [42] review
several types of battery models used on electrical vehicles.

Plett et al. [43] develop and analyze several observation models;
the SoC is considered to be an unknown variable, and the battery
voltage an observed variable. To describe the relationship between
the SoC and the voltage, the authors create a combined model by
merging three existing voltage models: Shepherd, Unnewehr uni-
versal and Nernst. This combined model estimates the voltage
efficiently but suffers from computation problems when the SoC is
near to 0% and 100%, because of the terms 1/SoCt, log(SoCt), etc.

Furthermore, the authors consider that these terms can be
reduced to a OCV(SoC) function. In this “simple model”, the rela-
tionship between the battery voltage and its SoC is described as
follows:

Ut ¼ OCVðSoCtÞ þ R$It (5)

OCV(SoCt) plays a central role in the EKF. Plett and al. do not give
a theoretical description of this relationship, but a graphical one;
the ratio vOCVt/vSoCt is calculated using this graphical
representation.

Dai et al. [16] use the 2nd order Randle model to physically
represent a Li-ion battery pack:

Ut ¼ OCVðSoCtÞ þ URC1
t þ URC2

t þ R$It (6)

where Ut, the observed variable, is the pack terminal voltage, URC1
t

and URC2
t are the voltages across the two RC circuits estimated using

the EKF, R is the internal resistance of the battery and OCV(SoCt) is
the relationship between the OCV and SoC. As in the previously
discussed article [43] this relationship is not clearly described
despite its importance in EKF.

However, the precision of the voltage estimation depends
essentially on the quality of OCV(SoCt). We have seen earlier (Sec-
tion 4.2) that this relationship depends on the battery technology.
In certain cases the OCV has a limited variation on a broad SoC
range, thus calling into question the performance of the EKF. In
addition this relationship varies according to the current rate, the
state of health, etc. As a result, this relationship cannot be described
using a single equation or a single lookup table.

Also, the output voltage depends on the polarization of the
battery. This is highlighted by the hysteresis effect occurring in the
battery. In order to describe the voltage hysteresis effect, Plett et al.
[43] develop the “zero-state hysteresis model”, an improvement of
the “simple model” discussed above. The authors add a switching
factor which depends on the sign of the current, and the difference
between the maximum positive and the minimum negative of the
hysteresis.

However, this hysteresis factor flips immediately when the
current sign changes. A slow transition may be modeled consid-
ering that the battery voltage contains an unknown hysteresis
voltage that will also be estimated using the EKF. For a Ni-MH
battery, Xuyun and Zechang [44] represent the evolution of the
hysteresis factor using an exponential function depending on the
current value, a parameter derived from the hysteresis voltage test
and the maximum value of the hysteresis voltage. For a Li-ion
polymer battery, Plett et al. [43] consider the evolution of the
hysteresis voltage as an exponential function of the SoC, the rate-of-
charge of the SoC and the current value.

In a more advanced model called “enhanced self-correcting
model”, Plett et al. [43] consider the relaxation effect during
pulsed current events and rest periods as a low-pass filter on the
current. The model forces the estimated voltage to converge to OCV
after a rest period.

Hence the extended Kalman filter is a strong tool to estimate the
SoC but a number of issues remains unsolved. First, the EKF is not an
optimal estimator because it leads to an inaccurate estimation
when the state or observation equations are strongly nonlinear. An
optimal model that predicts efficiently the battery voltage without
being too complex is needed. Second, the EKF strongest limitation
is the need to initialize different filter parameters, like the state
vector and the covariance matrix. The EKF may diverge quickly if its
parameters are inadequately initialized. To solve this problem Han
et al. [45] use an adaptive Kalman filter that estimates automati-
cally the initial covariance matrix.

4.3.2. Open circuit voltage estimation
The open circuit voltage cannot be measured in real-time but

may be estimated based on a suitable battery voltage model.
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Pan et al. [46] estimate OCV based on an EKF whose unknown
variable is OCV and observed variable is the terminal battery
voltage. The authors use a reactive battery circuit model to describe
the evolution of OCV.

Hirai et al. [47] and Moo et al. [48] calculate OCVt directly given
the current It and the terminal voltage Ut based on the Randle
equivalent model.

The OCV can also be calculated using a state observer [49e51]. A
state observer estimates the hidden state bxt of a process, i.e. the
unknown OCV, based on the following formula:

bxtþ1 ¼ f ðbxtÞ þ G$ðbyt � ytÞ: (7)

In battery applications, f(.) is the transition equation modeling
the battery behavior, the observed variable yt is usually the output
voltage, byt is estimated based on an electrical model and G is the
observer gain which can be constant [49,50] or variable [51]. Hu et
al. [51] estimate OCV using an adaptive Luenburger observer. The
observer gain is adaptively adjusted using a stochastic gradient
approach so as to reduce the error between estimated and
measured battery output voltage, se Fig. 4. The computational cost
of a state observer with fixed gain is reduced compared to adaptive
gain.

Given the OCV, the SoC is then estimated using a predefined
relationship that is considered as linear [46,48] for Lead-acid bat-
teries and exponential [47] for Li-ion ones.

In order to modulate the hysteresis effect between the SoC and
OCV, Tang et al. [52] use the Preisach operator to decompose this
hysteresis in an N elementary hysteresis called hysteron. Two var-
iables are associated with each hysteron i: a SoCi and a portion wi.
The SoC is estimated as:

SoC ¼
XN
i¼1

wi$SoCi: (8)
4.3.3. Parameters identification
The identification of the parameters of the state and observation

models, specifically the voltage model, can generally be classified
into two categories:

1. The time domain analysis, which uses experimental battery
voltage and current data, under pulse tests [40,63,47].

2. The frequency domain analysis, for example the impedance
measurement of the battery using Nyquist plots [63]. More
efficient than time domain analysis methods, the impedance
measurement, again for example, suffers from several limita-
tions mentioned in Section 4.2.

In both categories, the estimated parameters do not change
according to the cycling conditions, and remain stable during the
charge/discharge of the battery. As a result the model is generally
Fig. 4. SoC estimator through an adaptive Luenburger observer.
valid only in identical experimental conditions.
However, these parameters change during the charge/discharge

of the battery and depend on the cycling conditions [26,53e55]. To
overcome this problem, several researchers have implemented
heuristic methods. Hu et al. [51] create a lookup table to identify the
model parameters for a specific SoC. This method is based on an
estimated and therefore inaccurate SoC, and on a lookup table
whose limitations are presented in Section 4.2. Pang et al. [46]
incorporate all model parameters in the vector state of the Kal-
man filter; so they are estimated at each time step. This method can
use a lot of BMS resources despite the fact that these parameters
change slowly during the cycling conditions and do not need to be
frequently estimated. Hirai et al. [47] identify themodel parameters
for a specific temperature and SoC. This model cannot be efficiently
generalized to situations not seen previously. Plett et al. [43]
develop a more advanced model by performing joint optimiza-
tion over the temperature range where every parameter is repre-
sented by a continuous polynomial (4th order) of temperature.

The model parameters can also be estimated using machine
learning methods. In battery applications, the most used method is
the least-squares method [16,43]. More advanced methods take
into account the sensor error and can be applied in real-time.
Accordingly, the estimated parameters can be updated during the
charge/discharge of the battery and adapted according to the
cycling conditions. These techniques are designated as online
learning and will be discussed in Section 4.5.

All of the presented methods above require a battery modeling
in order to provide a terminal battery voltage model. This model is
used to improve the Ah-counting method or to estimate OCV, and
benefits from the strong link between the OCV and the SoC. To
physically establish an efficient battery voltage model, several
phenomena have to be modeled like the hysteresis and the relax-
ation effects. This makes the voltage model too complex and poses
computational problems [56]. Moreover the model parameters
change during charge/discharge of the battery. The proposed im-
provements [46,43,51,47] are not enough as they do not take into
account the limited hardware resources and the improved model
cannot be efficiently generalized to cases not previously seen.
4.4. SoC obtained from inputs estimated using electrochemical
models

During battery cycling, several phenomena occur alongside the
main redox reaction, like the diffusion and migration of ions, phase
transition and ohmic resistance. Thus the state of charge of the
battery is influenced by all these phenomena and cannot be directly
measured. An electrochemical model, such as the single particle
model [57] and porous electrode model [58], is used to estimate
one or several physical quantities based on a micro modeling of the
phenomena occurring during battery cycling. This electrochemical
model can be used to estimate OCV or the concentration repartition
of active material in the anode, thus allowing the SoC to be calcu-
lated using a suitable estimation model. In the following, we pre-
sent several SoC estimation methods where inputs variables are
estimated using electrochemical models. Table 4 describes the SoC
estimation methods of this Section according to the novel
Table 4
Main classification criteria for SoC obtained from inputs estimated using electro-
chemical models.

Estimated input variables OCV, overvolatege, Lithium concentration
SoC estimation model Physical
Other models Electrochemical models of OCV, overpotential
Type of processing Closed & open-loop
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classification, see Fig. 1.

4.4.1. OCV estimation
Pop et al. [25] estimate two physical quantities, OCV and over-

voltage, based on an electrochemical model. Thus two SoC esti-
mation methods are presented: the first one is based on a OCV/SoC
electrochemical relationship and the second one consists in
improving the Ah-counting considering the overpotential. Indeed,
due to overpotential, the remaining charge cannot be withdrawn
from the battery, because the battery voltagewould drop below the
cutoff voltage. To incorporate the influence of the ambient tem-
perature, a linear relationship between it and the other model
parameters is considered. The main limitation of the two models is
that the values of the parameters depend on the determination
method and experimental conditions.

4.4.2. Estimation of the lithium concentration
In a Li-ion battery, SoC is defined as the ratio between average

and maximum concentration of lithium inside the anode. Santha-
nagopalan et al. [59] model the battery by a single spherical particle
which represents each electrode by a single spherical particle. Thus
the behavior of each electrode is modeled by a diffusion equation
governed by Fick's laws, and then an extended Kalman filter is used
to solve these diffusion equations and estimate the concentration
repartition of lithium inside the two electrodes.

Di Domenico et al. [60] model the battery by a porous model
which considers that each electrode consists of a solid matrix
immerged in the electrolyte. Unlike the previous method, it de-
composes each electrode into M parts, with a diffusion equation
being calculated per part. A Kalman filter with M�1 evaluation
equations is used to estimate the concentration of lithium inside
the anode.

In both methods, a relationship between the output voltage of
the battery and the concentration of lithium in the anode provides
the observation equation of the Kalman filter.

Nevertheless, the SoC estimation based on electrochemical
models has several limitations. First, the electrochemical processes
depend widely on the battery technology and the fabrication
method. Therefore, even for identical technologies and providers, a
small disparity can greatly affect the low-level battery parameters.
Second, the battery state of health, which affects largely the
physical and chemical properties of any battery, is not considered in
these models: the ageing of the battery decreases the number of
active particles and modifies the conductivity of the electrolyte
[11,61,62]. Moreover, electrochemical models require knowledge of
low-level battery parameters values which is impossible in some
contexts.

4.5. Estimation based on machine learning methods

The majority of SoC models presented above have a set of pa-
rameters that need to be identified. For instance, the estimation of
the parameters of

� the relationship between the OCV and SoC [46e48] (Section 4.3),
� the state and the observation models of an EKF [63] (Section
4.3),

can be done using machine learning methods. The least squares
method, one of the simplest machine learning methods, is already
used in the batteries domain in order to estimate the parameters of
the battery voltage models [16,43]. However the machine learning
domain contains more advanced methods that can efficiently es-
timate the parameters of a physical model.

In the following, we present the principle of machine learning
methods, before we discuss the ones used to estimate the SoC.

4.5.1. Principle of machine learning
Consider a system whose behavior is described by:

zt ¼ f ðrt ;wÞ (9)

where zt is the observed system output, rt the known input vector
and w the model parameters to be estimated. As shown in Fig. 5,
these methods comprise three major phases: the construction of
the training dataset phase, the learning phase, and the estimation
phase. The first and second phases are often performed offline,
while the third phase is achieved online.

In the first phase, input and output variables are considered to
be available (directly measured or calculated). A training dataset
D ¼ fðri; ziÞji ¼ 1;…;Ng, where N is the size of the dataset, is
collected through experimental tests. In a battery application, z
represents the SoC and r represents the input vector that can be a
set of measured variables like current, voltage and temperature, or
estimated variables like OCV. A training dataset is generally
collected in a laboratory under controlled conditions: ambient
temperature, current profile, etc. The SoC values in the training
dataset are obtained using the Ah-counting method. This is
rendered reliable as the current sensor is very efficient and the
initial value of SoC is known.

During the learning phase, one looks for the model parameters
w in order to have function f(r,w) fitting the output z, given the
inputs r. This problem is generally referred to as the regression
problem. In other words, the objective is to attain a quality criterion
while estimating the parameters based on the training dataset. In
the case of the regression problem, this often means minimizing
the residual Lp-norm:

min
w

 XN
i¼1

jf ðri;wÞ � zijp
!1=p

: (10)

In the most cases one uses the L2-norm which is the sum of
squares of the residuals. The least squares method is therefore used
to estimate w.

In the estimation phase, a new measured input vector rt is
considered, the output bzt is then estimated using the model whose
parameters are estimated in the learning phase.

The intent of this technique is not to find an exact model but an
approximation of it. It is important to emphasize that these
methods can learn the parameters of a non-physical model f(,),
especially those of a statistical regression model that establishes a
relationship between the SoC and the input variables. Therefore
such a model is not always interpretable. The main virtue of the
machine learning technique is its capacity to be easily extrapolated
in different situations as soon as a corresponding training dataset is
available.

In the following we present several battery SoC estimators based
on machine learning methods: the autoregressive moving average,
the support vector regression and the artificial neural network. The
elements of the SoC estimation methods presented in this Section
are listed in Table 5 according to the novel classification, see Fig. 1.

4.5.2. Autoregressive moving average (ARMA)
Kozlowski [64] estimates SoC using the ARMA model:

SoCt ¼ w1$rt þw2$rt�1 þw3$SoCt�1 (11)

where rt is the input vector including the components of the in-
ternal impedance, identified online based on pattern recognition of
the current and voltage signals. Here the model parameters w1, w2
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and w3 are estimated in the learning phase using the least squares
method. Multiple training datasets were collected during the
charge and discharge phases, under various temperatures and
loads. Four types of batteries are considered: primary lithium and
alkaline, and nickelecadmium and lead-acid secondary batteries.
Thus there are 300 datasets across the different types and sizes of
batteries. The model parameters are then identified separately for
each cycling conditions and type of battery. Accordingly, prior to an
online estimation of the SoC, suitable model amongst the 300
models must be chosen based on the cycling conditions, type and
size of the battery.

Unfortunately, the least squares approach is strongly dependent
on the training dataset. The learned model may fit fits very well the
training dataset but is not generic enough to fit new data that bears
slight differences compared to training data. This problem is
referred to as “overfitting”. To avoid it there are numerous regula-
rization techniques enabling smoother models [76]. This can be
usually achieved by:

� adding a penalty term to the cost function (10) like in SVR [65],
RVM [75], LASSO [74],

� implementing a cross-validation techniques.

The former technique gives a smoother model, i.e. some of the
parameters wi are equal to zero. The latter technique provides an
unbiased estimator of the model parameters and is generally
coupled with the first technique. Both techniques remain limited
when there is a significant difference between the training dataset
and the real-time data. For a better understanding of the cross-
validation techniques, we describe here K-fold technique which is
one of the most widely used ones. It consists in splitting the
training dataset into K subsets. At each iteration, two sets are
considered: the learning set, involving all subsets except the ith one
used to learn the model parameters, and the testing set, also called
validation set, including the ith subset and used to test the pre-
dictive performance of the model. Hence, the best model of the K
learned models is retained. Fig. 6 shows a detailed flow diagram of
the K-fold cross-validation. However, the main drawback of this
technique is that it has a high computation cost as Kmodels need to
be learned.
4.5.3. Support vector regression (SVR)
The SVR algorithm estimates the parameters of a non-linear

regression model which describes the system behavior as
following:

zt ¼
XN
i¼1

wi$kðrt ; riÞ; (12)

where N is the size of the training dataset,wi the model parameters
estimated by SVR and k(,,,) the kernel function. Thus the regres-
sion model is based on a kernel function that measures the simi-
larity between the new sample rt and the training sample ri. The
SVR algorithm rules out some of the wi as it adds a penalty
constraint on the model parameters. Accordingly, a significant
number of wi are void. The remaining wi corresponds to specific
samples from the training dataset called “support vectors”. Only
these vectors are then used in Equation (12) to describe the
behavior of the modeled system [65].

The SVR model is used to estimate the SoC based on a poly-
nomial kernel in Ref. [66] and on an exponential kernel in Ref. [67].
Hansen et al. [66] use the current and output voltage as input vector
rt; Anton et al. [67] add the battery temperature to rt.

In both studies the training dataset contains only experimental
tests under a constant current rate and a single ambient tempera-
ture. Accordingly, the estimated model is valid under identical
cycling conditions and it cannot be efficiently generalized to cases
not seen in the learning phase. In addition, the SVR model is un-
suitable for time series processing since it does not take into ac-
count the time dimension.

4.5.4. Artificial neural network (ANN)
In machine learning, the ANN is used to describe complex pro-

cesses by using a non-linear regression model. An ANN is a set of
nodes organized in layers which are connected through arrows
weighted by wi. In most cases, a three layers system is used: the
input layer includes as many nodes as variables in the input vector
which includes the inputs rt, the hidden layer, containing M nodes,
which describes the non-linearity of the process via M interme-
diary functions gi(rt), and the output layer which provides the
estimated output zt via an activation function K(,):

zt ¼ K

 XM
i¼1

wigiðrtÞ
!
; (13)

Based on a training dataset, the connection weights wi and the
parameters of gi(,) are estimated in the learning phase using such
methods as the least squares method or back propagation algo-
rithm [69].

Charkhgard et al. [70] represent the battery voltage via an ANN:

Ut ¼
XM
i¼1

wi exp

 
� jjrt � tijj

s2i

!2

þw0 (14)

where ti and si are the parameters of the intermediary function gi(.)
and rt¼(Ut�1,It,SoCt). This mathematical representation of the bat-
tery voltage is then used as an observationmodel of an EKF that has
the Ah-counting formula as its state model. This model raises
computational problems to calculate vUt/vSoCt, as it is a sum of M
strongly non-linear functions.



Table 5
Main classification criteria for SoC estimator based on machine learning
methods.

Input variables Online measured
SoC estimation model Statistical regression
Other models e

Type of processing Closed & open-loop

Fig. 6. Principle of K-fold cross-validation.

Fig. 7. Online learning procedure.
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Yanqing et al. [71] develop a more complex model using two
successive ANNs. The first one provides a prediction of the battery
voltage. The inputs of this ANN are defined based on the combined
voltage model [43]. Thus the temperature Tt, the current mea-
surement It and SoCt are used as inputs of the first ANN. The second
ANN is used to update the parameters of a PID controller that es-
timates the SoC:

SoCt ¼ Kp$ðet � et�1Þ þ KI$et þ KD$ðet � 2$et�1 þ et�2Þ þ SoCt�1

(15)

where KP, KI, KD are respectively the proportional, integral and
derivative gain of the controller, and et is the gap between the
predicted and measured voltage. In this case, the PID controller is
called “neuro-controller” as Kp, KI and KD are calculated using an
artificial neural network. Accordingly the SoC model is adapted
online when the cycling conditions change and provides an effi-
cient estimation of the SoC. Although the model can be generalized
more efficiently than the previously presented models, it remains
limited when the cycling conditions are very different from the
training dataset or when the state of health of the battery de-
creases. In these cases the model parameters of both ANNs have to
be updated. However the use of two successive ANNs increases the
complexity of the model and the embedded model can require a lot
of the BMS computational resources.

The choice of the input variables directly affects the quality of
the ANN. Thus Bo et al. [72] use partial least squares regression
(PLSR) to select the input variables. Affanni et al. [73] use the in-
ternal impedance, the extracted charge and the open circuit voltage
as inputs of the ANN. However these parameters cannot be directly
measured; they are estimated using their physical definition as it
induces an important error on the input values and affects the
performance of the method.
4.5.5. Difficulties in choosing the training dataset
As shown above, in machine learning, the estimated model

depends strongly on the training dataset, the learning method and
the quality criterion. Thus, in order to obtain a generic model that
can give a reliable SoC estimation for any battery type under any
cycling conditions, as many possible situations must be included in
an exhaustive training dataset. Such a dataset requires a large
number of experimental tests. We can identify several types of
battery behavior according to internal characteristics and external
cycling conditions. Indeed, the battery behavior varies following
the charge/discharge, SoC ranges ([0,20], [20,80], [80,100]), battery
technologies, types of current profile (constant, dynamic, etc.), state
of health, outdoor temperature and so on. Thus, machine learning
methods are able to give a generic SoC estimator for all behaviors
existing in this dataset. Another approach consists in associating a
battery model to each battery behavior like in Ref. [64] or, for
example, a model for each voltage rate like in Ref. [68]. The problem
of the latter technique is the need for a large storage space that is
often limited in real-time contexts. Therefore, our interest is
brought below on new and promising machine learning tech-
niques, called “online learning”.
4.5.6. Online learning
In a real-time context, the cycling conditions are uncontrolled as

they depend on the user's behavior, weather conditions, road
conditions, etc. In order to create a generalized model, all possible
situations must be included in the training dataset. It is clear that it
is difficult if not impossible to carry out as there is an infinite
number of cases. Machine learning offers some promising tech-
niques that update the model when necessary, i.e. online. Gener-
ally, the model must be updated when the distribution of data
changes over time in unforeseen ways. To take into account this
change, two strategies are distinguished: adaptive learning and
drift detection.

The adaptive learning methods update the model parameters at
each time step. These methods have already been used in a battery
context by Pang and al. [46] (see Section 4.4.3), but require a lot of
BMS resources, even though the parameters change slightly during
charge/discharge and do not need to be frequently estimated.

In battery applications, drift occurs when the cycling conditions
are very different from those of the training dataset or when the
state of health of the battery decreases significantly.

Consider an estimated physical quantity which can also be
measured in real-time conditions, the battery voltage for example.
The drift can be detected when the gap between the estimated and
measured values exceeds a predefined maximum threshold.

Another method to detect the drift is to compare the statistical
distribution of the observations, the battery voltage for example, in
the current time window and also in a predefined reference win-
dow. When both distributions are significantly different, a drift is
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occurring.
Nonetheless, it is important to distinguish sensor noises from

data changes. An efficient method must be robust to noise and
adaptive to changes. For this reason, more advanced drift detection
is based on the evaluation of the model performance in recent past.
The complete online learning procedure is presented in Fig. 7. These
methods are yet to be fully developed. The limited hardware re-
sources, i.e. computation capacity, as well as the required learning
time should be taken into account. In addition, it is necessary to
note that no reference SoC is available online. At first glance, this
may appear as a considerable restraint to this technique, but in
practice, additional information like internal impedance, capacity,
state of health, OCV, etc. is integrated in the online learning pro-
cedure and greatly improves the estimated model. Fig. 8 provides
an overall and detailed description of creating an ideal SoC model.

In conclusion, the machine learning methods provide powerful
techniques to estimate the parameters of a SoC model but they are
not well explored. A penalty on the model parameters and a cross
validation can provide a simple and smooth model. The main
drawback of these methods is the need for an exhaustive training
dataset including all possible cycling conditions and types of bat-
teries. Collecting such a dataset is difficult if not impossible to carry
out. More advanced techniques, like online learning, can detect
variations in battery behavior and adapt the model to new situa-
tions. Accordingly, these techniques can provide an ideal model,
reliable for all battery types and under all cycling conditions. In
addition, it is important to note that having a reliable SoC in the
training dataset is sometimes difficult; particularly in real-time
applications like hybrid electric vehicles.

5. Discussion

The battery being a complex electrochemical system, it is very
difficult to provide an exact SoC model. Moreover, the electro-
chemical phenomena of each type of battery are very specific and
their description requires the knowledge of the low-level battery
parameters which is not possible in some contexts.

Thus in order to create an approximate and generalized SoC
model, an infinite number of experimental tests must be conducted
to estimate its parameters.

Therefore all existing estimation models and methods are not
generic and have some limitations. Several researchers develop SoC
estimators for a specific battery technology, for instance, the
method based on electrolyte density for acid batteries and the one
based onmodeling themigration of materials for Li-ion batteries. In
addition, many developed models that do not take into account the
Fig. 8. Complete description of c
influence of the cycling conditions on the battery behavior. For
example, the SoC model is learned for a fixed temperature and
current rate [66] and for a fixed state of health [51]. Several re-
searchers improve the SoC model by incorporating the influence of
ambient temperature [43] and the variations of the battery char-
acteristics according to the SoC [47]. More advanced models can be
adapted online [46,71] but they require a lot of BMS resources as
themodel parameters are updated at each time step. But all of these
methods remain limited when the cycling conditions are very
different from those of the training data. A summary of all the
existing methods and their types, based on the novel classification,
is presented in Table 6.

Accordingly, a complete and generic model that provides a
reliable SoC estimation for any battery technology under any
cycling conditions, is needed. The characteristics of the ideal model
depend on the goal and the context of the battery usage, and even
on the specifications of the system. First, an ideal model must be
efficient specifically when the SoC is near to 0% and 100% to avoid
over-charge/discharge that cause permanent damage and fire risks
like, for example, in the case of a Li-ion battery. Also, it must give a
linear indication avoiding brutal change in order to give confidence
on autonomy prediction. Second, an ideal model must be robust to
the sensor noise like the Kalman filter, specifically in commercial
products, such as an electric vehicle; an efficient current sensor is
very expensive. However in a laboratory, sensors are generally very
reliable and there is no need to complicate the model with sensor
noise treatment. Third, this model has to estimate the SoC in a real-
time application. In this case, the battery is often partially charged
and reference points that provide a SoC calibration are seldom
available. In addition, the estimation of the SoC of batteries pack,
usually used in real-life contexts, introduces more complexity due
to the heterogeneity of the elementary battery constituting the
pack [77]. The display rate of the SoC is also an important factor in
real-time applications. In cell phones and laptops, the variation of
the SoC is slower than the one in electric vehicles. Accordingly, the
estimation algorithm must adapt more quickly in applications
where the SoC changes rapidly. Fourth, a completemodel must take
into account the limitations in calculation capacity and storage
space of the Battery Management System (BMS). Hence, the
calculation complexity of this model and its fixed parameters, like
the lookup table, is governed. Finally, this model has to incorporate
the variation of the battery properties and performances like the
state of health, impedance and available capacity, as well as the
influence of the cycling conditions on the battery behavior. It must
be updated online to keep track of the variation of the battery
properties. It must also be able to indicate when it becomes
reating an ideal SoC model.



Table 6
Summary of the existing models and their types based on the novel classification.

SoC model Input variables and parameters Type of
processing

References

Measured
online

Measured
offline

Estimated using physical
model

Estimated using electrochemical
model

Estimated using statistical
model

Offline Online

Lookup table ✓ ✓ ✓ [27,37,38]
✓ ✓ [1]
✓ ✓ ✓ [51]

Physical
model

✓ ✓ ✓ [49,50]
✓ ✓ ✓ [8,18,80]
✓ ✓ ✓ ✓ [19,22]
✓ ✓ ✓ ✓ [7,43,68,70,78,81]
✓ ✓ ✓ [16,17,40,44,45,63]
✓ ✓ ✓ ✓ [25]
✓ ✓ ✓ ✓ [59,60]

Statistical
model

✓ ✓ ✓ ✓ [46]
✓ ✓ ✓ ✓ [47,48,52]
✓ ✓ ✓ [64,66,67]
✓ ✓ ✓ [71e73,79]
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inapplicable and when the learning of a new model is necessary.
In light of the above, machine learning methods are able to

acquire the behavior of the battery through real data, without the
absolute need to have a physical description of the battery. They can
be used to identify the parameters of either predefined physical or
statistical regression models. The dataset collected during an
experimental test like the current, temperature and output voltage,
is called training data. Thus the learned model is applicable on
identical battery technology with the same experimental condi-
tions of its corresponding training data. Therefore, in order to
provide a valid model for all battery technologies under any
experimental conditions, exhaustive training data that includes a
large variety of situations is necessary. However, the behavior of the
battery changes and the cycling conditions are uncontrolled and so,
no single estimation model is valid at all times. Hence an online
update of this estimation model is crucial. Updating a model online
faces two constraints: the first one being limitations on storage and
calculation capacities, the second being the absence of a reliable
SoC. With these problems solved, the machine learning methods
can provide an ideal SoC estimator.
6. Conclusion

In this paper we have introduced a novel classification of the
existing SoC estimation methods. The main benefit of this classifi-
cation is that it enables the identification of the techniques that can
be improved to potentially reach an ideal SoC estimation model.
Such a model can estimate the SoC efficiently in a real-time context
without being impacted by the battery chemistry or the cycling
conditions. We found that methods based on directly measured
physical quantities (presented in Section 4.2) cannot be generalized
in a real-time context, as these quantities can only be measured
offline. Also, methods based on an open-loop processing do not
take into account the sensor noises which can greatly decrease the
reliability of the estimation, particularly in mainstream commercial
products. Moreover, methods based on closed-loop processing, like
the Kalman filter and controller, are promising candidates on the
way to obtain an ideal SoC estimator. The main difficulty of these
methods resides in the parameters' identification. Clearly, machine
learning methods provide powerful techniques allowing the esti-
mation of these parameters. However, these methods need an
exhaustive training dataset to produce a generalized and smooth
model. More advanced machine learning techniques can adapt the
model online when a drift occurs. Accordingly, the machine
learning techniques can provide an ideal SoCmodel that is updated
automatically online when the characteristics of the battery or the
cycling conditions change.
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