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Large scale EV charge scheduling under contragiosakr
constraints: a priority rule-based semi-online athm

Pierre Blanchaff Marine Depecker-Quéch§rCédric Auliaé”
SCEA, LIST, 91191 Gif-sur-Yvette CEDEX, FRANCE

Abstract

The scope of this research work is to study thdempntation of Electric Vehicles (EVs) based VittBawer
Plants (VPPs) through optimized charging process fiéet of vehicles spread over multiple chargstations.

In this context, this paper focuses on smart chaaeeduling for an ensemble of EVs operated byeat fl
manager. We consider a semi-online setting wheeeigg information about EVs' arrival times, parking
durations and energy needs isn't available beferdEl/s’ connection to the charge spots ; only disbatistics
(computed at the fleet level) for these quantitisss made available beforehand. In this context lepgse, as a
first step, to learn a priority function to be usada second step to perform online schedulingfdathcoming
EVs' requiring a charging service, according tchaghest priority, processing first" scheme. As wedre most
about the shape of the priority function, we prapts learn this function in an offline way as adtion of
charging information collected from the EV fleetlazonsolidated in a historical database.

Keywords:Electric Vehicle; Virtual Power Plant; Charge Sghkng; Constrained Optimization; Statistical
Learning

Résumeé

L'objectif des travaux présentés dans cet articiedéétudier la faisabilité d’'une centrale éleatieqvirtuelle
basée sur I'optimisation des processus de (dé)etdiome flotte de Véhicules Electriques (VE). Ceicée porte
plus précisément sur I'optimisation et la planifioa des processus de charge pour une flotte deNdls nous
plagons dans un contexte semi temps réel, ou femmations relatives a I'’heure d’arrivée des VRirtetemps
de stationnement ou encore leurs besoin en érmeggient connues que lors de la connexion du VEbariae de
recharge. Avant cet instant, nous ne disposonsdiuee statistique globale (calculée a I'échelleladlotte)

relative a ces quantités. Dans ce cadre, nous poogad’abord d’apprendre une régle de prioritéleefutiliser

ensuite pour la planification en temps réel desg@ssus de charge des VE, en favorisant la chageéhicules
prioritaires. La regle de priorité, inconnaepriori, est modélisée en mode hors-ligne a partir dstbhique des
données de charge de la flotte, agrégée par Istingeaire de flotte.

Mots-clé:Véhicule Electrique; Centrale Electrique VirtuelRdanification de Charge; Optimisation sous
Contraintes; Apprentissage Statistique
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1. Introduction

The main goal of this work is to support the susthle large scale integration of Electric VehiqlE¥'S) into

the electricity distribution grid, based on thei@ént, flexible and reliable management of theiads. Indeed,
based on the optimization of EVs charging procesE&sfleets can support distribution grids and divag

infrastructures operations. In this paper, focuméle on EV fleets managed by a company. In theidered
business model, a fleet manager will act as anesgdor in order to provide energy services to gkeatilities

and grid operators participating into the eledyiecharket. A well-known service which may be praddby an
EV fleet is load shifting, relying on coordinated/& charge scheduling so as to avoid charging dupieak
periods. Thus, a fleet manager would sell the 'Besdpability to charge a given amount of energgraw given
time horizon in a flexible manner, exploiting tHeeft as a Virtual Power Plant (VPP). Concretdlyhé EV-

based energy services offered by the fleet managet the demand of a market player, the two pawimsd

agree on a specific load profile to be implemeittgdhe EV-based VPP. This contracted load profdéngs the
total amount of energy at the disposal of the fleeteach time slot of 15 minutes duration disaiag the

contract-period (assumed to last the whole day).

Selling services based on EV fleet management wegoldifferent steps. At first, the fleet operatbiosd
provide a service offer consistent with the expgarergy needs and charging capabilities of it fldere, we
assume that the fleet manager is able to compuimatses of these quantities based on the chargaig d
collected from the fleet during the EVs’ chargiressions (a charging session being a period durtlighwan
EV is connected to a Charge Spot and requires iftpsgrvices). Based on this data, the fleet mamagable to
design a panel of products/services to be offerethe energy market. Then, once a contract isesketitl has to
be concretely implemented: the target fleet loaafilgr must be decomposed into individual chargiobeslules
to be achieved by each EV of the fleet. It is thgponsibility of the fleet manager to ensure thataggregated
load profile of the fleet -obtained by summing b individual load profiles of all fleet membergspects the
load profile agreed by contract. Moreover, derivingm its contractual obligations may result inrsfgant
financial penalties for the fleet manager. Thisaieposition stage is a complex task as many aspegtsto be
taken into account simultaneously, related botthéoend-users requirements and the technical desistic of
both the EVs and the Charge Spots (CS) they aneemted to. In particular, EV drivers will connecafidomly”
to CS and require different amounts of energy tahwrged during variable parking durations. Morepeace
connected to a CS, EVs will have to deal with chygower limitations even if, for sakes of simplc we will
assume that the fleet is homogeneous in terms sf Elximum battery capacity or charging power. Hgeribe
main difficulty in the decomposition stage will lie the high variability of individual EV objectigeand
constraints, mainly related to end-users’ needs.

In this context, our aim is to propose an automta for smart resource allocation over EV fleatsabling
finding optimal schedules complying with both thentract established by the fleet manager and theusar
requirements in terms of energy needs and parkimgtidn, as well as respecting the EVs related tcainss.
This paper is organized as follows: we provide rtroductory state-of-the-art on constrained optation and
resource allocation in Section 2. Our semi-onlinke-based scheduling approach is then detaileceatic 3.
Eventually, we provide a proof of concept basedhwmerical experiments in Section 4.

2. A short overview of scheduling techniques

Optimizing the charging schedule of an EV fleeuady boils down to solve a resource allocationgpem. The
global power load capacity granted to the fleet ttade distributed among the different EVs avasafdr
charging in a smart manner so as to respect tledsebntract and to adapt to the EVs needs andticonts.
Hence, EV resource allocation can be seen as acsepvovided by the fleet manager both to the grid
stakeholders and to the EV users. Concretely, ctingpa smart charge scheduling for a fleet of El&dg to
solve a constrained optimization problem of therfor

min fy(x) subject to fi(x) < b;,i = {1,--,m} )
Wheref, is theloss functionto be optimized under a set efnstraintsf;(x) < b;,V i. In our context, the loss

function could be a measure of the user dissatiefaavhile the constraints would imply e.g. respegtthe
technical limitations of the battery and in the migae fulfilling the contract settled on the market
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2.1.Generic optimization methods

In the literature, classic optimization approachage been used to solve such scheduling issuesa Woban be
formulated as a linear programming problem, involving a linear loss function subject to lineaquality and
inequality constraints, classical optimization altfons can be used such as the Simplex algoritham{fdg &
Thapa, 2003) or the Interior Point Method (Nemitow& Todd, 2008). This is the point of view adoptad
Huang et al. (2012) and Sortomme & El-Sharkawi (A0¥or Plug-in Hybrid Electric Vehicles (PHEVS)
charging optimization. Yet, EV charging optimizatits a complex optimization problem that cannotaalsvbe
formulated in a linear way. For example, in Hele{2012) and Sortomme et al. (2011), EV chargedaling is
addressed from a non-linear perspective. Althougfimear optimization problems are usually morenptex
to solve, convenient formulations can be considenaing the problem easier to cope with. In paldigunon-
linear but yet convex optimization problems haverbextensively studied and can be efficiently stbltreough
deterministic resolution methods such as gradiesteint or Newton-Raphson algorithms, or heuristich as
the extension of the Simplex algorithm proposeWiife (1959). Eventually, when the EVs’ charge skhiimg
problem remains under a non-convex form, approx@chamethods can be used; see for example Xu & Wong
(2011) and Clement-Nyns et al (2010). Contrarydtedministic approaches, in this setting, the smuspace is
explored through numerical sampling in a stochastimner. This approach allows performing a moreresive
search for solutions (when exhaustive search isogsiple) in order to avoid remaining trapped inoaal
optimum. The main advantage of such methods is they need few or no assumptions regarding the
optimization problem at hand. On the other handy tiisually can’t guarantee finding any optimal soluand
come with a high computational cost. Neverthelessta-heuristics such as Genetic Algorithms (Golgber
1989) or Particle Swarm Optimization (Olsson, 20k often privileged to find approximate solucfor
complex optimization problems.

2.2.Resource allocation methods

In parallel,resource allocatiorproblems, also termeschedulingproblems have their own growing literature.
Hence, dedicated approaches have been proposelyéotlsis specific class of optimization issuesparticular
in the context of “jobs” allocation over several \® (Central Processing Units). Automatic schedulimg
resource allocation introduces a new perspectitaakling such constrained optimization problems;refer to
Brucker, Mohring, Neumann & Pesch (1999) for a iiedareview. Resource allocation aims at distribgta
limited resource over several users. Two mainrggstiare usually distinguished, online (dynamic) afftine
(static) resource allocation issues, involving efiént resolution methods. The offline setting refer the fact
that all the characteristics of the problem (usdeshands and constraints) are known in advanceambte used
to compute an optimized allocatiarpriori. On the contrary, ian online resource allocation probleneither of
these inputs is known in advance; they become knodependently when each task is released or wheh e
user arises. The problem we consider in this pappears to stand in the latter category.

Dynamic Programming (DP), an iterative method #iats at solving a collection of nested decisiorbfgms,

is commonly used to solve resource allocation gnwisl in the context of CPUs job allocation (see $&ds,
2012). Provided that the optimization problem tosbkred is well suited for such a recursive apphpdgnamic
programming usually tends to have a lower companati cost than classic (meta-)heuristics, depending
however on the dimension of the problem. Indeedssital DP programs highly suffer from the curse of
dimensionality (i.e. number of control variables dptimize). Approximate Dynamic Programming (ADP)
methods have been introduced to cope with thiseigsee e.g. Powell, 2007) by providing an approtéma
solution based on the estimation of the loss fancthrough classic learning algorithms such asaieatworks.
However, like many heuristics, (A)DP methods teacdhé very time consuming. Thus, they seem to beemor
adapted for solving offline rather than online shilang issues. Indeed, resource allocation is wenyplex to
solve in an onlinesetting, because of the lack of visibility over tt@vered time horizon, and of additional
constraints related to computational efficiencyamonline setting, delays for computing the allmeafor next
step are usually very short, limiting the choicelaf resolution method. Coordinated EVs chargeddheg has
been nevertheless tackled from an ADP perspeatige,in Han et al. (2010) and Xu and Wong (201%t,Y
such approaches don’t appear to be suitable fdatge scale EV scheduling issue considered inpidyser.

Hence, rule-based scheduling may remain the bé=tative, although most of real-word problems @@
complex to be efficiently solved (at least in antimal way) through such naive approaches. Ruleebase
scheduling aims at allocating an available resoim@n adapted manner, following basic rules defagriori.

We refer to Pinedo (2012) for a detailed reviewudé-based scheduling in different settings. Mdghese rules
are defined in the offline setting though, when iaformation regarding users’ demands, tasks’ dtédims,
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machines’ capacities are known in advance. Inditasl,easier to define smart rules wahpriori information
than running completely blind as in the online iegtt Such rules can show poor performances in tiime
setting. In this paper we propose to get arountl ifgue by building smart rules based on the etitbmaof
priority functions from historical EV charging dattaat will drive a dispatching algorithm complyimgth EVs
requirements and constraints.

3. A semi-online rule-based scheduling approach

In this section, we introduce our resource allarapiroblem formulation and provide a rule-basedtsmh to the
online scheduling problem corresponding to chardiMs when precise information about their arriviedes,
parking durations and energy needs is not availbbfere they connect to a charge spot. Thus, wsidena
semi-online setting exploiting day-ahead globatistias of the fleet (allowing anticipating the samption
patterns for the next day) in order to learn anigicfunction. The later will be used by an onlinde-based
scheduling algorithm in order to allocate energ¥tts requiring a charging service, according taoptimized
"highest priority processing first" scheme. Thidlwilow flexible allocation of the global amounf energy
contracted by the fleet manager among the flee¢Bickes while satisfying end users’ requirementsl an
respecting basic technical constraints.

3.1.Problem formulation

Context definition In this paper, we consider that time is diseediaccording to 15 minutes time slots, during
which every ongoing process remains constant. Ahginge occurs only at the transition between two
consecutive time slots. Typically, this impliesttki@e charging power provided to an EV’s batteryab@S does
not change during 15 minutes time slots. We debgtg the total number of time slots during a day (im ou
caseT = 96) and byN the number of EVs requiring charging servicesryithe day.

Charging session descriptiehWe first define the concept of charging sessidrich is the period during which
an EV is connected to a CS and requires a spexaificunt of energy to charge its battery. A chargiegsion is
characterized by a set of paramefers w,, R,, E;***} that are supposed known (transmitted by the Ethéo
fleet manager) as soon as the EV connects to tngicly infrastructure, where:

a, € {1,-+,T}is the index of the time slot where the chargiegsfon starts (connection to a CS)

w, € {1,---,T}is the index of the time slot where the chargiegsion ends (disconnection from a CS)
R, denotes the amount of energy requested by the ssdatithe beginning of the charging session
EI'%* represents the technical limitations of the E¥, the maximum amount of energy (related to the
maximum charging power) that its battery can rezeiuring one time slot.

For the sake of simplicity, we will assume thatleaar does not participate in more than one chgrgassion
per day. Therefore N reflects the number of chaygi@ssions occurring during a single day and the Gi the
fleet considered by the fleet manager during tleat @©f course, the value of N may vary from one ttathe
other. While the above pieces of information arkeased only at the beginning of a charging sesaiush
therefore are a priori unknown, we consider thatfthet manager can anticipate forthcoming chargegsions
thanks to a model of its fleet's dynamic. We assuime existence of a simple model based on a three-
dimensional histograrh(t, g,l) which gives the number of vehicles connecting @83 at time slot with an
energy needy (this modeling implies discretizing the driversieggy requirements) and an expected parking
durationl. Thus, we do not have a statistic associated avighrticular vehicle but a global statistic at $hale of
the fleet. Such statistic may be based on the sisabf historical charging data, on CS booking datiaen such
service is available) or on prior knowledge of diag sessions (for a delivery fleet for instancE)e fourth
parameter E;***) is not modeled as it is supposed to be known byléle¢ manager as a technical characteristic
of its EVs.

PonhPE

In this paper, we are interested in designingltheN schedule matri¥ = {E,},n € {1,---, N}, then-th line of
which, E, = {E,(t)},t € {1,---,T}, representing the charge plan (also referred tdlaml profile”) to be
implemented for then-th vehicle, i.e. the set of sequential energy dfews between the CS and the EV
participating into the n-th charging session. Sitimepower delivered by the CS to the EV’s battsrgssumed
to take on continuous values which will remain ¢ansduring 15 minutes time slots, we will considig(t) to

be a continuous amount of energy transferred betwe€S and an EV during charging sessiat time slott.
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Our goal is to determine these energy transfeenioptimal way, so as to maximize the end-uset&faation
while respecting the energy contract settled byfldet manager as well as crucial technical lintad.

Respecting the energyontract— The first goal of this work is to design the @@ plans so that the fleet's
energy consumption over the day will match the @mmtsettled by the fleet manager on the energkehain
order to respect this constraint, we impose thaezh time slot, the total amount of energy preditb all the
vehicles of the fleet remains below the energy tittamegotiated on the market for that time slos the
contract value for a specific time slot is dendigd” (t), we have:

C(t) = g:l En(t)'t S {1' 'T} (2)

By definition,vn € {1,---,N}if t < a,, Ort > w, then:E,(t) = 0. For this approach to make sense, the total
contract negotiated for a day has to be a goodoappation of the overall energy need of the fleatrathat day.

Maximizing the end-users satisfactienin order to assess the drivers’ satisfaction,n@ed to defin®;, the
amount of energy actually delivered by the chapye # the n-th EV until time sldte [a,, w,] as:

Dn(t) = D (t — 1) + E,(t) = f:an E,(D),VtE Jap, w,] 3)
Therefore,D,’™ denotes the total amount of energy delivered byaB at the end of the charging session:
D (wn) = X2 En(t) 4)

We make the assumption that all the energy suppljethe charge infrastructure is used to chargeb#itery,
i.e. that it is not used by any other electricateyns such as air (or battery) conditioning.

We seek to minimize the global end-users’ dissatigfn defined as the square of the normalizedgihgr
shortage (i.e. the square of the percentage oktiigested charge which couldn’t be performed) sudnapeover
all charging sessions. The square function is ¢hiced so that stronger dissatisfactions get manalized as we
consider that having many users experiencing a light dissatisfaction is better than having a fasers
experiencing a strong dissatisfaction. Thus we washptimize the following problem:

2
_ 2 Rp—=XO1  E.(t)
; N Rn—Dn(wn)\“ _ . N n~At=ap En
ming Y- (—Rn = ming Yy-1 —

()

Additional constraints Finally, in order to tackle the optimization pteim described above, we also have to
consider the following additional constraints:

1. an EV can't be charged more than required by thed— D, (t) < R,,Vn,V t

2. there is an upper bound on the amount of enerdgMacan charge during a time slet E,, (t) < EI***
The first constraint may be relaxed in order toleitpany charging capacity left into the batteryhelsecond
constraint refers to the technical limitations logé £V and the charge spot it is connected to ams dot take
into account power supply limitations coming frotre tcharge/grid infrastructure (which may vary tlgiou
time). Note, that we also made the implicit assuompthat drivers do not require energy above theimam
capacity of the battery of their vehicle.

3.2.An online Dispatching algorithm

As explained in section 2, the above schedulindplera has to be envisaged in an online fashion. &fbes, we
propose to apply a classic resource allocationquoe, relying on a “highest priority processingtfi rule-
based approach and introducing slight modificationthie way the negotiated contract is dispatctetdiden the
vehicles. The “priority” determines the portiontbe contracted amount of energy an EV will obtaimirtg a
time slot: the higher the priority, the higher thenount of energy allocated to the EV. In the follogy
procedure, we adopt a rather straightforward wajnfafrring this amount of energy from priority vek the
energy provided to an EV’s battery will be its nalired priority value (ranging from 0 to 1) muliigdi by the
contracted amount of energy in the current timé. glbe nature of the priority function will be di¢al in the
next sub-section and at this stage we considernarigeapproach taking as input the set of paramelér
defining a priority function.
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The physical limitations of the batteries or theemtwality of a vehicle finishing its charge conduttus to
slightly modify the regular dispatching scheme diedbin Figure 1. Thus, during time slgta connected vehicle
n is given the amount of chargeax{0, min{E;"**, p,(t) x (C(t) — U(t)), R, — D, (t)}} wherep, (t) is the priority
coefficient associated with theth vehicle for the-th time slot andJ(t) is the amount of contracted energy
that has been already dispatched fortthie time slot. Note that/(t) must not be confused with(t) as the
former represents the total amount of energy thatle dispatched at theh time slot considering charging
limitations. Thereforel/ (t) is a restriction ove€ (t): W (t) = min{C(t), Xney min{ET**, R, — D (t — 1}} .

We iterate this dispatching rule for each time slas long as there is a possibility to dispatch & phathe
contracted energy quantity over the plugged vesicldis allows fitting the contract as much as fssvhile
never exceeding it.

Dispatching Algorithm
Input: connection intervals {|ay,,wnl}, -/ vy, contract €, FEVs energy request
ne(l,N S
R.}, ., FEVs loading energy limitations {E™* } _ ., priority rule set of pa-
n=1,....] N n n=1,...,N
rameters I1
Output: 7" x N schedule matrix F and associated objective value Lg(I1
P J E
Initialization: F < 0 and completed charge D, (0) «+ 0,Vn

For each time slot ¢:
Compute normalized (i.e. summing to 1) FEVs priorities {p, ()}
Compute W(t) « min {C(t),>", min {E"™ R,, — D, (t — 1)}}
Set U(t) « 0
Set D, (t) « D,(t —1),Vn
while U(t) < W(t) do
for n € (1, N) do
Charge vehicle n by giving it an amount of charging energy
A (t) = max {0, min { EP* p, (¢) x (C(t) = U(t)), R, — D, (t)}}
Set D, (t) « D, (t) + A, (t)
end for
Set U(t) « U(t) + 3, An(t)
for n € (1, N) do
Set Ep(t) « En(t) + An(t)
end for
end while

n

N (.'.",, e r-..,m)f
'

Compute loss function value Lg(II) « 37,7 R

Figure 1 - Dispatching scheme to compute the sdedohm an arbitrary priority rule
3.3.Learning the priority function

In this subsection, we propose to define EVs' fijoas a function of the remaining parking time athe
remaining energy to be charged. Intuitively, inertb fulfill the end-users’ requirements, the pitioshould be
higher for vehicles with shorter remaining parktimge and higher "remaining-to-complete" charge. Gdiowe
can anticipate these simple considerations to U tve ignore most about the shape of the pridubgtion
which may be dependent on the problem at hand.hd firopose to learn this function in an offlineywased
on the past observations of the EVs remaining pgrkime and remaining-to-complete SOC. We assurae th
the fleet manager consolidates charging data ftsrteiet to compute a reliable fleet's dynamics eidshsed on
the histograni(t, g, I) previouslyintroduced in subsection 3.1.

In the following, we consider:

- the remaining parking time denoted &yark, (t) = max(0, min(w, — a, + 1w, —t + 1))

» the remaining charge before completion denoteddyy(t) = R,, — D, (t — 1)
We wish to learn the two-dimensional priority fuoctp depending or222 n®  and 5“12? which are
normalizations of the quantity mentioned previously the following, we denote by, (t) the value of the
priority functionp evaluated ir(m,%).
We chose to use a parametric model for this funad®a weighted sum of bi-dimensional Gaussiantifoms:

P(X) = Ther By e (X = XV X - X)) (6)

1
2|V
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!
whereX is the two-dimensional vecttélm,%) . X' denotes the transpose of veckorThe set of

parameters of the functignX), is denoted byl = {ﬁk, X Vk}k—l---K wherep, is the weight of the k-th

component of the mixture model akg, V, are respectively the mean vector and covariandexraf the k-th
Gaussian component.

Using these notations, learning the priority fuotboils down to finding the set of parametHrsninimizing

_ 2
the loss functionLz(IT) = ¥N_, (%"(w")) which reflects the end-users dissatisfaction whilgpecting the
n

energy contract and the EVs' charging limitatioirs.our setting, achieving this learning task ameutd
perform a re-parameterization of the initial mirdadion problem as a function of the priority fuocti

parameterd] and to perform the optimization over this paramefhe value of the loss functidix(I7) is
indeed obtained by computing the charging scheBulith the dispatching algorithm making use of aopty

function of parameterH. Thus, we cannot use standard mathematical ogtiniz algorithms relying on an
analytical expression of the problem functional kswas gradient descent, Levenberg-Marquardt or BFGS
algorithms. Among the various stochastic optimaatalgorithms we have tested, the simulated anmmpali
yielded the best results while taking a very reabtm amount of time to executéhe procedure described
below implements a SA scheme for our problem. Is fiItocedure, Dispatching() refers to the dispatching
scheme introduced ifigure 1 To evaluatd.;(IT) in the algorithm, we use the non-normalized histiay
h(t, g,1) to generate a “canonical” scenario on which tothendispatching algorithm presentedrigure 1 We
proceed in the following way: for a bin(t, g,l) containing a valuen, we generaten charging sessions
corresponding to the triplefs, t + [, g} and we repeat this operation for all bins of th&tdgram. The missing
parameter ;***) required to fully specify a charging session faveh randomly among a set of predefined
maximum charging values.

Priority Function Learning Algorithm

Input: h(t,g,l), annealing parameters v, Tji, MaxIterl, MaxIter2
Output: Optimized priority rule parameter IL,
Initialization:
T Tinit
Il < random initialization parameter set
Lewr < Dispatching(h(t, g, 1), ey, )
for ¢ = 1 to MaxIterl do
for j =1 to MaxIter2 do
Set € « small random perturbation
Set ey + ey + € and Lyey < Dispatching(h(t, g, 1), ey )
if Lpew — Leyr < 0 then
Set Ileyr < yew and Loy ¢ Lyjew
else
Sample u according to uniform distribution ¢ ([0, 1])
if u <exp (—%"—) then
Set ey + Myew and Leyy +— Lyew
end if
end if
end for
T AT
end for
Set Top = Teyr

Figure 2 - Simulated annealing procedure to |elagrpriority rule
4. Simulation-based experiments

In this section, we conducted experiments on ségaraulated scenarios, following two steps: wetflearned
the priority function based on a “fleet’s dynamiasiodel corresponding to a histograutt, g, 1) using the
simulated annealing algorithm detailed in FigureTBen, we evaluated the performance of the dispaich
algorithm using the learned priority function, ®wide range of scenarios. These were generatsdropling a
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large number of triplets from normalized histogralgs, g,!) modeling different fleet sizes and using the
sampled data to build a new histogram, represeatisyecific scenario deriving from the initial méde

4.1.Hyper-parameters setting

As previously highlighted, the considered algorishimvolve several hyper-parameters that have tabkrated.
For the presented simulations, all these parambters been settled experimentally. In particulae, number of
Gaussian components$ in the priority functionp (see Equation (6) has been fixed to 7, since it proved
experimentally to be the smallest number of comptmeapturing efficiently the shape of the prioritye. The
parameters of the simulated annealing procedure o been tuned experimentally by trying difféneaiues.
The parameter®axiter1 andMaxiter2 have been fixed respectively to 500 and 5, the@litemperaturd;,;; to

10 and the decay coefficieptto 0.99. Yet, it has to be noted that the tunifighese parameters may be
improved thanks to more systematic/extensive seasithtegies, yielding better performances for the
corresponding algorithms.

4.2.Experimental design

In these experiments, the energy contract has gerarated randomly (based on a uniform distriblifitine

only constraint being that the total amount of ggezontractually offered to the fleet over the dagtches the
total fleet’'s users demand. Of course, the extenmittich a contract is feasible will depend on iafze.

Besides, 20 different fleet models (correspondiny(t, g, [) functions), with different sizes ranging from 100
100000 EVs, have been generated. For each models@narios were sampled and tested independently.
Finally, for each model, we have computed the valliéhe loss function averaged over the 200 scesand
allow comparisons of the results yielded by théedént fleet sizes.

4.3.Experimental results

At first, the proposed scheduling method is compavéh a reference approach given by the followgmiprity
function:

Sparkn(t) 8gn(t) Sparky(t) Sgn(t)
pbase”"e( Tn ’ 130 )= (1_ Tn )X 11(;0 ™

Wherespark,(t) andég, (t) are defined in subsection 3.3. This simple bi-disienal ad-hoc rule gives more
importance to vehicles with a short parking duratieft and a big amount of energy remaining to barged.
Plot (a) of Figure 3 represents the graph of thgpke rule, while plot (b) of same figure represetite learned
rule for the first fleet model (i.e. for 100 EV&)e observe that the intuition implemented in thehad rule is
also verified for a learned priority rule. Yet, fhis setting, the remaining parking time appearshasmain
influencing factor, the remaining-to-charge SOGhgai influence when the parking time left is low.
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Figure 3 - (a) ad-hoc priority rule - (b) learneibpty rule

Plot (a) of Figure 4 summarizes the average loksv@ached for each fleet model with the assotiaégiance.
We notice that as we increase the fleet size, waimlbetter results (i.e. smaller mean value ancbdity of
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the loss function across the different scenaridb)s may be explained using simple statistical @erations:
the actual behavior of a large fleet will be lékely to deviate from a regular pattern than atfle®unting a few
vehicles. In the latter case, a few drivers chamghreir habits may invalidate the estimated fleeymamics

model.
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Figure 4 - (a) average loss value reached witHetmed priority rule (red curve) versus the ad-hde (blue curve). The
vertical bars indicate the variability of the rasucross the simulated scenarios - (b) averageepiage of the contract
which could be fulfilled for each fleet model.

Another important aspect to envisage in experimeatgerns the fulfillment of the negotiated contr&e plot
(b) of Figure 4, we represent the average percergéighe contract which has been fulfilled, comgubser all
time slots of all scenarios for each fleet mode. (ileet size). Like for the users’ satisfactithe fit-to-contract
grows with the size of the fleet. Indeed, withigeneric setting (in this work, we did not desigmedstrained
fleet behavior neither additional power supply tetions coming from the grid), a bigger fleet offenore
flexibility in the way we allocate resources amangltiple EVs. Besides, the fact that the above gaiage isn't
increasing steadily and is subject to jumps/dropy tme explained by the fact that the contractsgareerated
randomly for each fleet model and may thus be moless favorable to the computation of a feassisleedule.
An important drop in the curve is generally expéarby a generated contract being strongly unfaverebthe
sampled charging sessions’ scenarios.

The last aspect of our experiments concerns theutira time of the online scheduling. We ran allr ou
experiments under Matlab on a standard workstatiosingle-threaded mode. We first observed that the
computation time of a resources allocation stepeiges almost linearly with the size of the flaed aemains
negligible compared to the duration of a time sloteed, the onlinelispatchingalgorithm ran in aboubne
secondor the largest fleets, while the energy contrmaetconsidered had a 15 minutes granularity. déerning

of Priority Functionshad a higher computational cost (around 30 minfieesthe worst case scenarios) ;
however, this has no impact on the operationabfisee method as this learning step is performéihef

5. Conclusion and perspectives

In this article, we presented a method to learniaify function from an estimated model of a flsedynamics.
The main advantage of this method is its abilityp applied in an online mode, where the conneciiath
disconnection times of EVs, as well as their energgds are not known a priori but may be anticghateanks
for instance to statistical models. Another advgets the possibility to schedule the charge oitrntily large
fleets of vehicles since the only costly part inrteof computation time is the offline learning bé&tpriority rule.
The scheduling algorithm can be applied in neaktieee since it is only the application of a prigrirule and
thus is computationally efficient. The limitatiori the approach mainly relies in the reliability e fleet's
dynamics model. Such a model may indeed be provweshgvby unexpected events, such as a public event
causing people to make a much more intensive usieedfcars in a certain geographical area. Wecareently
working on an extension of our approach in ordeidamntify the deviations from the original fleet de and
react to them in an online way by adapting the rjgsicfunction. Besides, we are also considering @am
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sophisticated formulation of the problem in ordertdke into account additional constraints suclclresging
power limitations coming from the charge infrastuwe or the distribution grid.
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