New standards of absorbed dose to water under reference conditions by graphite calorimetry for 60Co and high-energy x-rays at LNE-LNHB

Franck Delaunay, Jean Gouriou, J. Daures, Maïwenn Le Roy, Aimé Ostrowsky, Benjamin Rapp, S. Sorel

To cite this version:

HAL Id: cea-01831912
https://hal-cea.archives-ouvertes.fr/cea-01831912
Submitted on 20 May 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
New standards of absorbed dose to water under reference conditions by graphite calorimetry for 60Co and high-energy x-rays at LNE-LNHB

To cite this article: F Delaunay et al 2014 Metrologia 51 552

View the article online for updates and enhancements.

Related content
- Dosimetric standards for photons beams in Canada and France
 Ken Shortt, Carl Ross, Jan Seuntjens et al.
- Direct calibration in megavoltage photon beams using Monte Carlo conversion factor: validation and clinical implications
 Tracy Wright, Jessica E Lye, Ganesan Ramanathan et al.
- Using a dose-area product for absolute measurements in small fields: a feasibility study
 S Dufreneix, A Ostrowsky, M Le Roy et al.

Recent citations
- Large irradiation doses can improve the fast neutron/gamma discriminating capability of plastic scintillators
 Eva Montbarbon et al.
New standards of absorbed dose to water under reference conditions by graphite calorimetry for 60Co and high-energy x-rays at LNE-LNHB

F Delaunay, J Gouriou, J Daures, M Le Roy, A Ostrowsky, B Rapp and S Sorel

CEA, LIST, Laboratoire National Henri Becquerel (LNE-LNHB), F-91191 Gif-sur-Yvette CEDEX, France
E-mail: franck.delaunay@cea.fr

Received 25 June 2014, revised 25 August 2014
Accepted for publication 28 August 2014
Published 25 September 2014

Abstract

The LNE-LNHB has developed two primary standards to determine the absorbed dose to water under reference conditions (for 10 cm \times 10 cm) in 60Co, 6 MV, 12 MV and 20 MV photon beams: a new graphite calorimeter and a water calorimeter. This first paper presents the results obtained with the graphite calorimeter and the new associated methodology. The associated relative standard uncertainty ($k=1$) of absorbed dose to water is 0.25% for 60Co and lies between 0.32% to 0.35% for MV x-ray beams.

Keywords: absorbed dose to water, graphite calorimetry, high-energy x-rays, PENELOPE, EGSnrc, cobalt-60

(Some figures may appear in colour only in the online journal)

1. Introduction

Calorimetry is used by several National Metrology Institutes (NMIs) and the Bureau International des Poids et Mesures (BIPM) for realizing absorbed dose to water standards. A recent review of the different methods to measure photon absorbed dose can be found in the literature [1]. Some of the NMIs use water calorimetry (METAS—Switzerland, NIST—USA, NRCC—Canada, PTB—Germany, VSL—Netherlands [2–10]) and others use graphite calorimetry (BIPM, ARPANSA—Australia, BEV—Austria, ENEA-INMRI—Italy, NMJJ—Japan, NPL—United Kingdom, VNIIfTRI—Russia [11–24]).

At the LNE-LNHB, the previous absorbed dose to water references were based on the graphite calorimeter GR-8 [25] built in 1984. For a 60Co beam, the absorbed dose to graphite in a homogeneous graphite phantom (30 cm \times 30 cm \times 20 cm) at a depth of 5 g cm$^{-2}$ was determined from the calorimetric measurements [26, 27]. The absorbed dose to water was derived from the absorbed dose to graphite using transfer dosimeters (ionization chambers and Fricke dosimeters) placed successively in the graphite and water phantoms [28, 29]. The absorbed dose to water for the linac beams was derived from the absorbed dose to water of the 60Co beam using ionization chambers and Fricke dosimeters as transfer instruments placed successively in the 60Co and the linac beams in the water phantoms, with an energy dependence taken from the literature [30]. The corresponding relative uncertainty ($k=1$) was 0.35% for the 60Co absorbed dose to water rate and was between 0.94% and 1.01% for the calibration coefficient of the reference ionization chamber of the linac beams. In recent years the LNE-LNHB has built new calorimeters: the graphite calorimeter GR-9 (figure 1) [31, 32] in 2006 and a water calorimeter [33]. This paper describes the results obtained with the new graphite calorimeter and the new associated methodology.

2. Absorbed dose to water in a 60Co beam

The reference point for measurements is situated at 1 m from the source and at 5 cm depth (front window included) along the
Figure 1. View of the inside of the graphite calorimeter GR-9 (diameter of the core: 1.6 cm). The core and its two jackets are in the gleaming disc in the middle. The golden spokes are connected to the thermistors inside the middle disc and to the reader outside the calorimeter.

beam axis in a water phantom of dimensions 30 cm × 30 cm × 30 cm with a 4 mm front window of polymethyl methacrylate (PMMA). The beam has a diameter of 16 cm (full width at half maximum) at the reference plane.

The methodology to derive the absorbed dose to water from graphite calorimetry measurements has been streamlined in order to reduce the uncertainties and is now based on the mean absorbed dose in the graphite core and Monte Carlo calculations to convert it into absorbed dose to water (no transfer instruments involved).

2.1. Methodology

The method and the results have been presented at the ‘Conference on Advanced Metrology for Cancer Therapy’ in Braunschweig (29 November 2011) [34]. The ARPANSA has independently developed a very similar method at the same time [23]. The absorbed dose rate to water at the reference plane (C) is calculated by using equation (1).

\[
\bar{D}_w(C) = D_{\text{core}} \left[\frac{D_w(V)}{D_{\text{core}}} \right]_{\text{MC}} k_i k_{\text{prof}}(V)
\]

where \(\bar{D} \) means absorbed dose rate and \(D_w \) the absorbed dose to water. The mean absorbed dose in the core (\(D_{\text{core}} \)) is the quantity measured within the core of the graphite calorimeter GR-9. To simplify the evaluation of uncertainties and avoid unnecessary steps, the mean absorbed dose in the core is used instead of the absorbed dose to graphite at a reference point in a homogeneous graphite phantom at a depth of 5 g cm\(^{-2}\). The ratio of the absorbed dose to water in a volume \(V \) surrounding the reference point C, \(D_w(V) \), to the mean absorbed dose in the core is calculated with Monte Carlo codes. The subscript \(MC \) indicates values calculated by Monte Carlo. The correction factor \(k_i \) corresponds to the correction factor for the graphite-core impurities, which are too small to be included in the Monte Carlo simulations (thermistors, conducting wires, silk threads, ...), and \(k_{\text{prof}}(V) \) to the profile correction factor needed to convert \(D_w(V) \) calculated in the finite water volume \(V \) at the reference depth (5 cm for the \(^{60}\)Co beam) to \(D_w(C) \) at the reference point.

2.2. Graphite calorimetry

The mean absorbed dose in the core (\(D_{\text{core}} \)) is measured within the core of the graphite calorimeter GR-9 inside a graphite phantom of 30 cm × 30 cm × 20 cm (20 cm depth). The depth of the core centre is situated at 4.404 g cm\(^{-2}\).

The calorimeter consists of three concentric bodies (core, jacket, shield), inside the phantom, all made of graphite. These bodies are separated from each other by 1 mm vacuum gaps in order to provide good thermal insulation. The core, the sensitive element, is a flat cylinder of 3 mm thickness and 16 mm diameter. The jacket and the shield thicknesses are 2 mm. These different bodies are suspended by means of three silk threads taut in the median plane of the core. A lateral view of the GR-9 graphite calorimeter is given in figure 2. The radiographs of the three central bodies (front and side views) are given in figure 3.

Six negative temperature coefficient (NTC) thermistors are embedded in the core for the measurements, the thermal control and the electrical calibration. They are in the form of glass-coated beads of 0.35 mm diameter.

The components of the GR-9 core and their respective masses are given in table 1.

The graphite calorimeter can be operated in quasi-adiabatic mode or in constant-temperature mode as previously explained in detail [25]. In the quasi-adiabatic mode, the thermal quantity measured with one thermistor is the temperature rise in the core during the irradiation. The other thermistors are used for the electrical calibration and the thermal control. For the constant-temperature mode, the core is maintained at an assigned temperature by means of controlled and measured electrical power. During irradiation, this measured electrical power is lower because the energy imparted by the ionizing radiation in the graphite is converted into heat. The quantity of interest is the difference of electrical power when the beam is successively off and on. The statistical uncertainties are reduced with this method which is used with the new calorimeters (GR-9 and GR-10).

The earlier GR-8 graphite calorimeter, with a core of the same dimensions, and the most recent one, GR-10, of small cross section adapted for use in the small beams of Intensity-Modulated Radiation Therapy, have been successfully compared with the GR-9 calorimeter used in the present study [32, 35]. The values of absorbed dose to water in \(^{60}\)Co obtained by measurements with the GR-9 and GR-10 calorimeters differed by less than 0.1% with a combined standard uncertainty of 0.3% on their ratio and the GR-8/GR-9 \(D_{\text{core}} \) ratios obtained by measurements and by Monte Carlo calculations were within 0.2% of unity, with a statistical uncertainty of 0.3% in the 6 MV and 12 MV beams.

In the present study, the measurements have been made in two campaigns and the mean value of both campaigns is used to determine the mean absorbed dose rate in the core. The type-A uncertainty of \(\bar{D}_{\text{core}} \) is equal to 0.014%.

![Image](50x593 to 290x772)
2.3. Monte Carlo calculations

A detailed description of the calculations is presented hereafter, as the calculated dose ratio $[D_{w}(V)/D_{\text{core}}]_{MC}$ is of critical importance in the determination of the absorbed dose to water.

Two different codes were used for the Monte Carlo simulations of the LNE-LNHB 60Co irradiator: EGSnrc v4-r2-3 [36–38] and PENELOPE 2006 [39].

The particles crossing a plane 10 cm ahead of the reference plane (5 cm ahead of the water phantom surface and at 90 cm from the 60Co source) are stored in a phase space file (PSF). The PSFs are created using both BEAMnrc (beam2008rc1) and Pennmain_mpi (2.52), a parallelised version of PENELOPE 2006 [40]. As the cobalt irradiator has a cylindrical geometry, the particles are split 5 times and rotated around the beam axis. The McTwist module [41] was added into BEAMnrc to introduce this type of variance reduction technique. With the PENELOPE code, the simulation of electron transport processes is controlled by specifying values for several parameters: C_1, C_2, W_{CC} and W_{CR}. C_1 and C_2 control, respectively, the average angular deflection produced by multiple elastic scattering of electrons along the step between hard events and the maximum average fractional energy loss in the step. W_{CC} and W_{CR}, respectively, represent the cutoff energy loss for hard inelastic collisions and for hard bremsstrahlung emission. For the PSF creation, the

Table 1. Masses of the GR-9 core components.

<table>
<thead>
<tr>
<th>Component</th>
<th>Mass in the core/g</th>
<th>Uncertainty/g</th>
<th>Mass fraction/10^{-2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platinum wires of the thermistors</td>
<td>0.00090</td>
<td>0.00009</td>
<td>0.08</td>
</tr>
<tr>
<td>Glass</td>
<td>0.00058</td>
<td>0.00009</td>
<td>0.05</td>
</tr>
<tr>
<td>Sensitive bead</td>
<td>0.00040</td>
<td>0.00009</td>
<td>0.04</td>
</tr>
<tr>
<td>Mass of glue for the six thermistors</td>
<td>0.00315</td>
<td>0.00006</td>
<td>0.30</td>
</tr>
<tr>
<td>Mass of glue for the three silk threads</td>
<td>0.00089</td>
<td>0.00013</td>
<td>0.08</td>
</tr>
<tr>
<td>Total mass of the three silk threads</td>
<td>0.00039</td>
<td>0.00004</td>
<td>0.04</td>
</tr>
<tr>
<td>Mass of graphite</td>
<td>1.05743</td>
<td>0.00002</td>
<td>99.41</td>
</tr>
<tr>
<td>Total</td>
<td>1.06374</td>
<td>0.00021</td>
<td>100.00</td>
</tr>
</tbody>
</table>
The impurity correction factor k_i takes into account all the details in the core that are not included in the simulation (for example thermistors, silk wires and resin). They are determined by considering that the impurities within the core are replaced by graphite and the impurities external to the core are replaced by vacuum (thermistor wires and silk threads). The calculation is derived from general cavity theory. The Monte Carlo calculation of the photon and electron spectra allows the estimation of the mean mass energy absorption coefficients and mass stopping powers. The value of the correction factor and its uncertainty are given in table 5.

The impurity correction factor in the water volume V (thickness 3 mm, diameter 16 mm), $k_{prof}(V) = D_w(C)/D_w(V)$ is divided into two terms: a longitudinal one (along the beam axis) and a radial one (perpendicular to the beam axis). The beam is assumed to have cylindrical symmetry along the beam axis and around the reference point in the water volume V. Along the beam axis, the longitudinal correction is assumed to be equal to unity with a negligible uncertainty. The radial correction (on a disc with a diameter of 16 mm) is calculated based on the horizontal (X) and vertical (Y) profiles measured inside the water phantom with a small volume ionization chamber. The profile measurements X and Y are symmetrised, and a radial profile (R) calculated from the horizontal and vertical profiles: $R = (X + Y)/2$. The radial profile R is fitted with a polynomial function g (easy to integrate) and $k_{prof}(V)$ is calculated with equation (2).

\[
k_{prof}(V) = \frac{R(C)}{\int_0^{r_{max}} g(r) r \, dr / \int_0^{r_{max}} r \, dr}
\]

with r_{max} radius of the disc and $R(C)$ value of the radial profile R at the reference point C. The type-A uncertainty is calculated from the measurement reproducibility at point C. The type-B uncertainty is evaluated from the difference between the same calculations with R taken equal to X or to Y as extreme cases, plus 0.02% due to the method. In the 60Co beam with the cylindrical symmetry, X and Y are very similar.

It is possible to compare the products $(D_w(V)/D_{core,MN} \times k_{prof}(V))$ for the volumes V with the diameters of 1.6 cm and 2 cm. The difference is less than 3 parts in 104.

3. Absorbed dose to water in a linac photon beam

The method is very close to the one described in section 2 with a few notable differences. Instead of relying on irradiation time, radiation monitors are used. Instead of calculating a dose rate, a reference ionization chamber is calibrated in the water phantom. This work has been carried out in the 6 MV, 12 MV and 20 MV beams of the Saturne 43 medical linear accelerator at the LNE-LNHB laboratory. The reference point is situated at 10 cm depth (4 mm front window of PMMA within a square of 12 cm side included) along the beam axis in a water phantom of 30 cm × 30 cm × 30 cm.

3.1. Methodology

The calibration coefficient for absorbed dose to water at the reference point (N_{Dw}) is calculated using equation (3):

\[
N_{Dw} = \frac{D_{w/mu}(C)}{Q_{w/mu}} = \frac{D_{core/mu}}{Q_{w/mu}} \left[\frac{D_w(V)}{D_{core}} \right]_{MC} k_{prof}(V)
\]

Table 2. Cutoff energies for the PSF creation.

<table>
<thead>
<tr>
<th>E_{cut}/keV</th>
<th>Photons</th>
<th>Electrons* in air</th>
<th>Electrons* not in air</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGSnrn</td>
<td>10</td>
<td>89</td>
<td>89</td>
</tr>
<tr>
<td>PENELROPE</td>
<td>10</td>
<td>100</td>
<td>200</td>
</tr>
</tbody>
</table>

* Kinetic energy cutoff.

Table 3. Cutoff energies for the dose calculations.

<table>
<thead>
<tr>
<th>E_{cut}/keV</th>
<th>Photons</th>
<th>Electrons*</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGSnrn</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>PENELROPE</td>
<td>5</td>
<td>50</td>
</tr>
</tbody>
</table>

* Kinetic-energy cutoff.
where ‘/mu’ in the subscript means that the quantity is ‘per monitor unit’. \(Q_w \) is the charge measured by the reference ionization chamber in the water phantom corrected for temperature, pressure and humidity. \(Q_w^* \) is the charge \(Q_w \) corrected for polarity, recombination and radial anisotropy.

As can be seen in equation (3), the calorimeter measurement results should be linked to the charge of the reference ionization chamber in water as directly as possible. To do this, a device was built with the water and graphite phantoms both placed on a mobile tray that can be easily moved to put one phantom in front of the beam and the other out alternately (figure 4). In this way, it was possible to make measurements in the water phantom with the reference ionization chamber in the morning and the evening, before and after the calorimetric measurements.

To check that the monitor information when the water phantom is irradiated, is equivalent to the monitor information when the graphite phantom is irradiated (possible differences in backscattered radiation from the phantoms), measurements were made consecutively with ionization chambers in the water (\(Q_w \)) and the graphite (\(Q_c \)) phantoms. The ratio between these charges per monitor unit (\(Q_w/\mu\) or \(Q_c/\mu\)) has been examined using different monitors. The preferred monitor is placed at the linac head exit, just outside the direct beam. This external additional monitor is more reliable than the internal one supplied with the linac. However, this internal monitor is located well inside the head so it has less dependence on the backscatter of the phantoms. If there is a difference in backscatter on the external monitor due to phantom differences, the charge ratio will be different when normalized to the internal or to the external monitor. The maximum observed discrepancy was of the order of 1 part in 10\(^2\), which is well within the statistical uncertainties (4 to 7 parts in 10\(^3\)).

Another point to be checked was whether locating one phantom close to the other contributes to the detection of more scattered radiation in the irradiated phantom. In the equations below, the notation ‘\(- \)’ means that the measurement is made with one phantom close to the other. To ensure that \(D_{\text{core}/\mu}/Q_w/\mu = D_{\text{core}/\mu}/Q_w/\mu \) or \(D_{\text{core}/\mu}/D_{\text{core}/\mu} = Q_w/\mu/\mu \), measurements with ionization chambers were made in the water phantom (\(Q_w/\mu \)) and in the graphite phantom (\(Q_c/\mu \)) with and without the other phantom by their side. The charge ratios in table 6 should be larger than one if the effect is significant. At 6 MV where the scattering should be the largest of the three beams, the measured effect was less than 3 \(\times \) 10\(^{-4}\), well within the corresponding statistical uncertainty of 5.3 \(\times \) 10\(^{-4}\).

Simulations have been done with EGSnrc to evaluate the effect of the additional phantom on the term \([D_w (V) / D_{\text{core}}]_{\text{MC}} \). The calculated effect was less than 5 parts in 10\(^2\) for the 6 MV beam and less than 1 part in 10\(^4\) for the 20 MV beam, well within the relative statistical uncertainties of 27 \(\times \) 10\(^{-4}\) and 12 \(\times \) 10\(^{-4}\) respectively.

3.2. Graphite calorimetry measurements

The absorbed dose in the core (\(D_{\text{core}} \)) is measured within the core of the graphite calorimeter GR-9 inside a graphite phantom of 30 cm \(\times \) 30 cm \(\times \) 20 cm. The depth of the core centre is situated at 9.379 g cm\(^{-2}\).

One day of measurements of \(D_{\text{core}/\mu}/Q_w/\mu \) (graphite calorimetric measurements bracketed by the ionization chamber measurements in the morning and evening) is considered as a single measurement for the calculation of uncertainties. The type-B uncertainties in table 7 correspond to the uncertainties on the monitor unit measurement (\(/\mu \)) and \(Q_w \).

Figure 4. Device allowing the shift of the water and graphite phantom positions in front of the beam. The graphite and water phantoms are positioned on a tray itself on a motorized rail (bottom) that can shift them in front of the beam.

Table 4. Calculated ratio \([D_w (V) / D_{\text{core}}]_{\text{MC}}\) for 60Co.

<table>
<thead>
<tr>
<th>PENEOPE</th>
<th>EGSnrc</th>
<th>PENEOPE/EGSnrc</th>
<th>Weighted mean</th>
<th>Type A (\times 10^{-2})</th>
<th>Type B (\times 10^{-2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0414 (12)</td>
<td>1.0408 (18)</td>
<td>1.0006 (20)</td>
<td>1.0412</td>
<td>0.094</td>
<td>0.2</td>
</tr>
</tbody>
</table>

\(k \) Relative standard uncertainties.

Table 5. Correction factors and standard uncertainties.

<table>
<thead>
<tr>
<th>(k_1)</th>
<th>(k_{\text{ref}} (V))</th>
<th>(k_{\text{ref}} (V))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9992</td>
<td>1.0002</td>
<td>0.10</td>
</tr>
</tbody>
</table>

\(a \) Relative standard uncertainties.

Table 6. \(Q_{w/\mu}^{/\mu} \) and \(Q_{c/\mu}^{/\mu} \) with their statistical uncertainties.

<table>
<thead>
<tr>
<th>(Q_{w/\mu}^{/\mu})</th>
<th>(Q_{c/\mu}^{/\mu})</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 MV</td>
<td>1.000 14 (53)</td>
</tr>
<tr>
<td>20 MV</td>
<td>0.999 96 (13)</td>
</tr>
</tbody>
</table>

3.3. Monte Carlo calculations

A detailed description of the calculations is presented hereafter, as the calculated dose ratio $[D_{w}(V)/D_{core}]_{MC}$ is of critical importance in the determination of the absorbed dose to water.

For each beam and detector studied, the Monte Carlo calculations are divided into two successive steps: creation of PSFs after adjustment of the initial accelerator beam parameters, and dose calculation within the specific geometry of each studied detector (taking into account the volume, shape, density and composition of the various detector components).

3.3.1. Creation of PSFs at the accelerator head output. The purpose of the first step is to determine for a given beam, i.e. with a specific nominal energy and irradiation field size, the characteristics of the initial incident electrons upstream of the accelerator head. Among the various adjustable parameters available, the most important are the electron kinetic energy and the electron impact location on the titanium sheet separating the vacuum of the accelerating cavities from the ambient air in the irradiation room. The incident electron location and kinetic energy distributions are assumed to be Gaussian. In practice, a PSF with a reduced number of particles is generated and used to calculate the beam axis depth-dose distribution and the dose radial anisotropy at 10 cm depth into a 30 cm \times 30 cm \times 30 cm water-filled tank volume. A maximum of 3 to 4 attempts with different parameter sets (specific electron initial energy and location distributions) are performed for a given beam. The set of parameters which gives the best agreement in terms of radial anisotropy and depth-dose distribution with experimental measurements is considered to correspond to the reference initial parameters for the studied beam. This approach is used concurrently for both Monte Carlo codes used in this study. Therefore, the set of initial parameters can be slightly different from one code to another. Then one PSF of larger dimension is generated according to the initial reference parameter set. The created PSF contains between 150 \times 104 and 800 \times 104 particles.

Two different codes were used for the Monte Carlo calculations of the SATURNE 43 linear accelerator: EGSnrc v4-r2-2–5 [36, 38] in association with BEAMnrc (beam2007), and PENELOPE 2004 [44]. The calculations have been made on a processor cluster. To run PENELOPE on several processors without overlapping of the random number sequences, seed numbers sufficiently apart in the random sequence were chosen to begin each calculation on a different processor.

The Monte Carlo programs used in this study are shown in table 8:

Table 7. Uncertainties of $\frac{D_{w}(V)}{D_{core}}$.

<table>
<thead>
<tr>
<th>Code</th>
<th>Type A'/10^{-2}</th>
<th>Type B'/10^{-2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 MV (3 days)</td>
<td>0.031</td>
<td>0.17</td>
</tr>
<tr>
<td>12 MV (3 days)</td>
<td>0.028</td>
<td>0.17</td>
</tr>
<tr>
<td>20 MV (6 days)</td>
<td>0.051</td>
<td>0.13</td>
</tr>
</tbody>
</table>

* Relative standard uncertainties.

Table 8. Monte Carlo programs.

<table>
<thead>
<tr>
<th>Code</th>
<th>PSF creation</th>
<th>Dose calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEAMnrc/EGSnrc</td>
<td>BEAMnrc/DOSSYZnc</td>
<td>DOSRZnc</td>
</tr>
<tr>
<td>PENELOPE</td>
<td>PSF/Do3D</td>
<td>Modified/ Pendoses</td>
</tr>
</tbody>
</table>

Table 9. Cutoff energies for the PSF creation.

<table>
<thead>
<tr>
<th>E_{cut}/keV</th>
<th>Electrons a in air</th>
<th>Electrons a not in air</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGSnrc</td>
<td>10</td>
<td>189</td>
</tr>
<tr>
<td>PENELOPE b</td>
<td>20/50</td>
<td>500/1000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E_{cut}/keV</th>
<th>Electrons a in air</th>
<th>Electrons a not in air</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGSnrc</td>
<td>10</td>
<td>189</td>
</tr>
<tr>
<td>PENELOPE b</td>
<td>20/50</td>
<td>500/1000</td>
</tr>
</tbody>
</table>

* Kinetic energy cutoff.

The DOSXYZnc and DOSRZnc programs are associated respectively with the BEAMnrc distribution and EGSnrc code. More complete information is available through their respective user manuals (DOSSYZnc [45], DOSRZnc [37]). The PSF and Do3D programs were developed for previous calculations made at LNE-LNHB [43, 46]. The modified Pendoses program dedicated to the dose calculation corresponds to the Do3D program except for the scoring areas. The energy depositions are not partitioned in voxels, but in the volumes of the detectors such as the core of the graphite calorimeter (diameter 16 mm, thickness 3 mm) or the water volume V around the reference point (diameter 16 mm, thickness 3 mm).

For the PSF creations, the parameters of the EGSnrc code were set to the default values except for three parameters. The pair angular distribution is based on formula 2BS of Koch and Motz [47]. The Bremsstrahlung events were simulated on the basis of the National Institute of Standards and Technology (NIST) differential Bremsstrahlung cross sections [48, 49] and the value of the maximum electron step length, S_{MAX}, is set equal to 5 cm.

For the PSF creation, the PENELOPE values used are $C_{1} = C_{2} = 0.10$ and $W_{EC} = 10$ keV, $W_{CR} = 50$ keV. The cutoff energies of both codes are summarized in table 9.

The variance reduction techniques used with PENELOPE are those developed by Mazurier et al [50]. They artificially increase the number of created Bremsstrahlung photons and the flux of photons towards the beam aperture. The values of the parameters $FMFP$ (forced mean free path) and $PKILL$ (killing probability) are identical to those taken by Mazurier ($FMFP = 0.006$ cm for 12 MV and 20 MV, 0.005 cm for 6 MV, $PKILL = 0.9$). The value of the parameter $NSPLIT$ (splitting number) is set equal to 5.

The directional Bremsstrahlung splitting (DBS) is called with the BEAMnrc program. Each Bremsstrahlung photon is split into 1500 particles (parameter $IBRSPL$). Moreover, at the flattening filter level, the electrons are split with the same factor and redistributed with radial symmetry about the beam axis. The global cutoff energy value for electron range rejection, $ESAVE$, is set equal to 2 MeV.

3.3.2. Dose calculations. For the dose calculations, the effects of electron impact ionization (inner shell vacancies) and...
Rayleigh scattering are taken into account in the DOSRZnrc program. The EGS value of global energy loss constraint, ESTEPE, is set equal to 0.04.

The PENELLOPE selected parameter values for the modified Pendoses program are $C_1 = 0.15$, $C_2 = 0.10$ and $W_{CC} = W_{CR} = 5$ keV. The maximum allowed step length between hard interactions of electrons and positrons, $DSMAX$, is set to ensure that, on average, there will be more than 20 soft events along a typical electron/positron track within specific regions (i.e. the sensitive part of the detector).

The cutoff energies of both codes are the same as those used for 60Co and are summarized in table 3.

Given the square shape of the radiation beam, the effective number of particles in the PSF created by the PENELLOPE code has been multiplied by a factor of 4 by considering the particle and its three symmetrical counterparts. The number $NSPLIT$ of identical particles used with the Russian roulette method is set equal to 10.

The only variance reduction technique used by the DOSRZnrc program is to reuse each particle stored into the PSF files $NRCYCL$ times, with $NRCYCL$ set equal to 30.

The results of the calculations of $[D_w(V)/D_{core}]_{MC}$ are summarized in table 10. The absolute uncertainties (in parentheses) correspond only to type-A uncertainties ($k = 1$). The results of the two codes agree within uncertainties, the largest observed discrepancy being 0.25%.

Table 10. $[D_w(V)/D_{core}]_{MC}$

<table>
<thead>
<tr>
<th>Beam (MeV)</th>
<th>PENELLOPE</th>
<th>EGSnrc</th>
<th>PENELLOPE/EGSnrc</th>
<th>weighted mean</th>
<th>Type A $/10^2$</th>
<th>Type B $/10^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1.0123 (25)</td>
<td>1.0144 (14)</td>
<td>0.9979 (28)</td>
<td>1.0139</td>
<td>0.147</td>
<td>0.2</td>
</tr>
<tr>
<td>12</td>
<td>1.0477 (21)</td>
<td>1.0484 (14)</td>
<td>0.9994 (25)</td>
<td>1.0482</td>
<td>0.114</td>
<td>0.2</td>
</tr>
<tr>
<td>20</td>
<td>1.0631 (15)</td>
<td>1.06467 (85)</td>
<td>0.9986 (16)</td>
<td>1.0643</td>
<td>0.102</td>
<td>0.2</td>
</tr>
</tbody>
</table>

* Relative standard uncertainties.

![Figure 5](image)

Figure 5. Ratios of PENELLOPE and EGSnrc calculations for different beam qualities: $(D_w/V)_{PENELOPE}/(D_w/V)_{EGSnrc}$. Only type-A uncertainties are shown ($k = 1$).

0.05% and 0.24%) were similar to those observed in this study. The weighted mean of both code results is chosen for the calculation of absorbed dose to water. As for 60Co, the corresponding type-A uncertainty is taken equal to the largest uncertainty evaluation obtained with the standard deviation of the sample or with the standard deviation of a weighted mean. The type-B uncertainty of the dose ratios is evaluated to be 0.2% based on comparisons between calculated and measured dose ratios [43].

Calculations have also been done for a cylindrical volume V of water with a diameter of 2 cm instead of 1.6 cm. Again the two codes agree within uncertainties, the largest observed discrepancy being 0.25%.

Table 11. Impurity correction factors.

<table>
<thead>
<tr>
<th>Beam (MeV)</th>
<th>k_i</th>
<th>$u_i^2/10^{-2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>0.9971</td>
<td>0.1</td>
</tr>
<tr>
<td>12</td>
<td>0.9968</td>
<td>0.1</td>
</tr>
<tr>
<td>20</td>
<td>0.9967</td>
<td>0.1</td>
</tr>
</tbody>
</table>

* Relative standard uncertainties.

3.4. Correction factors

The impurity correction factor k_i takes into account all the details in the core that are not included in the simulation (for example thermistors, silk wires, resin). The determination of this correction factor is described in section 2.4. Its value and the associated uncertainty are given in table 11.

The profile correction factor on the water volume V, $k_{prof}(V) = D_w(C)/D_w(V)$ is treated as in section 2.4. Its value and the associated uncertainties (type A and type B) are given in table 12. The profile correction factors have also been determined in the 6 MV beam with a diamond detector (same methodology but smaller detector) and with EBT3 films (2D measurements) and the results are in agreement within one statistical standard deviation.

It is possible to compare the products $[D_w(V)/D_{core}]_{MC}k_{prof}(V)$ for the volumes V with the diameters of 1.6 cm and 2 cm. The differences are less than 1 part in 10^3.

4. Results and discussion

4.1. Absorbed dose to water with the graphite calorimeter

For the 60Co beam, the different components necessary to calculate the absorbed dose rate to water are summarized in table 13. k_{asym} corrects for the slight asymmetry when the calorimeter is irradiated from the front or from the back. This asymmetry may come from density variations in the graphite...
Table 12. Profile correction factors on V.

<table>
<thead>
<tr>
<th>$k_{pol}(V)$</th>
<th>Type A/10$^{-2}$</th>
<th>Type B/10$^{-2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 MV</td>
<td>1.0006</td>
<td>0.076</td>
</tr>
<tr>
<td>12 MV</td>
<td>0.9981</td>
<td>0.076</td>
</tr>
<tr>
<td>20 MV</td>
<td>1.0035</td>
<td>0.076</td>
</tr>
</tbody>
</table>

* Relative standard uncertainties.

Table 13. $D_v(C)$ based on graphite calorimetry for the reference 60Co beam.

<table>
<thead>
<tr>
<th>$D_{v,ref}(C)$ (Gy/h)</th>
<th>k_{pol}</th>
<th>$k_{pol}/(D_{v,ref})_{MC}$</th>
<th>k_{asym}</th>
<th>$k_{asym}/(D_{v,ref})_{MC}$</th>
<th>$k_{GR} - 9$</th>
<th>k_{GR}</th>
<th>$D_{v}(C)/D_{v,ref}(C)$</th>
<th>$u_c(D_{v}(C))/D_{v}(C)$</th>
<th>$D_{v}(C)/D_{v,ref}(C)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.40 (94)</td>
<td>1.0000</td>
<td>1.0412 (23)</td>
<td>1.0000</td>
<td>1.0000</td>
<td>0.9992 (10)</td>
<td>1.388</td>
<td>0.9965 (48)</td>
<td>0.076 (14)</td>
<td>0.959 (48)</td>
</tr>
</tbody>
</table>

For the linac beams, the different components necessary to calculate the absorbed dose to water calibration coefficient of the reference ionization chamber NE 2571 (# 2791) are summarized in table 14. k_{asym} has been calculated based on the measurements in the 60Co beam. The thickness of the NE 2571 chamber PMMA waterproof sleeve is 0.5 mm. The LNE-LNHB k_v values corresponding to the previous methodology described in the introduction are shown in figure 6 (LNHB 1998) with crosses ‘+’ and without uncertainties for clarity as these standard uncertainties are between 0.87% and 1.1%. The new points are represented with ‘×’ (uncertainties between 0.41% and 0.44%) and are lower than the previous ones. The protocol TRS-398 [56] proposes uncertainties of 1%. The calculations of Muir and Rogers [57] with uncertainties of 0.28% (if W, mean energy expended in air per ion pair formed, is assumed constant) or 0.57% (if W is not constant) are closer to our k_v as well as the calculations of Wulff et al [58] with uncertainties between 0.3% (6 MV) and 0.5% (24 MV) [59]. The thickness of the PMMA waterproof sleeve was taken equal to 1 mm for the calculations. Compared to the experimental points [7, 60–62] all based on water calorimetry, the new k_v values obtained for the reference NE 2571 ionization chamber are in the low region. The different thicknesses of the waterproof sleeves can partly explain the k_v value differences.

4.2. k_v values for ionization chambers

The linac reference ionization chamber NE 2571 has also been calibrated in the 60Co beam allowing experimental k_v value determinations for the chamber and its sleeve. The thickness of the reference NE 2571 chamber PMMA waterproof sleeve is 0.5 mm. The LNE-LNHB k_v values are in agreement within one standard deviation. For the references of 1998, the calibration coefficients of the reference ionization chamber were taken as the arithmetic mean of the ionization chamber calibration coefficients determined with calculated ionization chamber k_0 and Fricke dosimeter k_0 factors. The ionization chamber k_0 factors were taken from the literature [53] with an uncertainty of 1.57% and for the Fricke dosimeter k_0 factors [54], a variation of the chemical yield with energy was taken into account [55], with a resulting uncertainty on k_0 of 0.55% for 6 MV, 0.83% for 12 MV and 0.95% for 20 MV. The uncertainty on the k_0 factors cover the differences with the new calibration coefficient values.

4.3. Comparisons

The LNE-LNHB regularly participates in key comparisons of absorbed dose to water for 60Co beams with the BIPM [63]. The previous comparison occurred in April 2013 and the ratio of the absorbed dose to water of LNE-LNHB and BIPM standards was 0.9971 (39). Using only the graphite calorimeter GR-9 and assuming that nothing else changed, the ratio would have been 0.9976 (40).

The BIPM has started a comparison programme with its graphite calorimeter in high-energy photon beams [51, 64–67] of the linacs of primary standard laboratories. The comparison with LNE-LNHB at 6 MV, 12 MV and 20 MV took place in March 2012 [65]. The ratios of the absorbed dose to water of LNE-LNHB and BIPM standards were 0.9952 (44), 0.9948 (47) and 0.9938 (50) for the 6 MV, 12 MV and 20 MV beams respectively. Using only the graphite calorimeter GR-9 and assuming that nothing else changed, the ratios would have been 0.9965 (48), 0.9943 (50) and 0.9952 (52).
Table 14. $N_{Dw}(C)$ of the reference ionization chamber (NE 2571 # 2791) based on graphite calorimetry.

<table>
<thead>
<tr>
<th></th>
<th>6 MV</th>
<th>12 MV</th>
<th>20 MV</th>
</tr>
</thead>
<tbody>
<tr>
<td>$TPR_{20,10}$ without k_s</td>
<td>0.67686 (35)</td>
<td>0.74919 (38)</td>
<td>0.78361 (40)</td>
</tr>
<tr>
<td>$TPR_{20,10}$ with k_s</td>
<td>0.67643 (38)</td>
<td>0.74828 (41)</td>
<td>0.78247 (42)</td>
</tr>
<tr>
<td>$\frac{D_{\text{core}}(\gamma)}{D_{\text{water}}(\gamma)}$ (Gy/C)</td>
<td>4.4110(75) $\times 10^7$</td>
<td>4.2236(70) $\times 10^7$</td>
<td>4.1117(57) $\times 10^7$</td>
</tr>
<tr>
<td>k_{TPR}</td>
<td>1.00050 (20)</td>
<td>1.00038 (20)</td>
<td>1.00032 (20)</td>
</tr>
<tr>
<td>$(D_{\text{w}}(V)/D_{\text{core}})_{\text{MC}}$</td>
<td>1.0139 (25)</td>
<td>1.0482 (24)</td>
<td>1.0643 (24)</td>
</tr>
<tr>
<td>k_{ω}</td>
<td>1.00060 (2)</td>
<td>1.00045 (1)</td>
<td>1.00038 (2)</td>
</tr>
<tr>
<td>$k_{\text{prof}}(V)$</td>
<td>1.00065 (79)</td>
<td>0.99814 (82)</td>
<td>1.00351 (93)</td>
</tr>
<tr>
<td>k_i</td>
<td>0.99711 (10)</td>
<td>0.99681 (10)</td>
<td>0.99671 (10)</td>
</tr>
<tr>
<td>k_{pol}</td>
<td>0.99910 (33)</td>
<td>0.99909 (33)</td>
<td>0.99898 (33)</td>
</tr>
<tr>
<td>k_{rn}</td>
<td>1.00282 (56)</td>
<td>1.00546 (56)</td>
<td>1.00534 (56)</td>
</tr>
<tr>
<td>$N_{Dw}(Gy/C)$</td>
<td>4.454(15) $\times 10^7$</td>
<td>4.395(15) $\times 10^7$</td>
<td>4.340(14) $\times 10^7$</td>
</tr>
<tr>
<td>$u_r(N_{Dw})/N_{Dw}/10^{-2}$</td>
<td>0.35</td>
<td>0.33</td>
<td>0.32</td>
</tr>
</tbody>
</table>

Figure 6. Experimental and calculated k_Q values for a NE 2571 ionization chamber according to different sources.

These results are in very good agreement with those of the ARPANSA [67], which used a very similar method based on graphite calorimetry: 0.9965, 0.9924 and 0.9932 for 6 MV, 10 MV and 18 MV respectively.

Looking at figure 6 at the differences between the k_Q values for high-energy x-rays presented in this study and the experimental values obtained with water calorimetry, and looking at the good agreement between LNHB and ARPANSA via the BIPM.RI(1)-K6 comparisons, one could infer the possible existence of two different sets of results available today according to the type of calorimeter used, i.e. graphite or water. The next comparisons between the BIPM and other primary standards laboratories should confirm or refute this theory.

5. Conclusions

The LNE-LNHB has developed a new graphite calorimeter to determine the absorbed dose to water under reference conditions ($10 \text{ cm} \times 10 \text{ cm}$) in ^{60}Co, 6 MV, 12 MV and 20 MV high-energy photon beams. The methodology used to calculate the absorbed dose to water with the graphite calorimeter is now based on the absorbed dose in the core and Monte Carlo calculations. The relative standard uncertainty ($k = 1$) is 0.25% for ^{60}Co and lies between 0.32% and 0.35% for MV x-ray beams. Another paper describing our work based on the water calorimeter will be presented in the future. The results obtained with the two methods will then be compared.
Acknowledgments

The authors would like to thank Bruno Chauvenet and Dr Penelope Allisy-Roberts for their valuable comments and suggestions on this manuscript.

References

[6] Krauss A 2006 The PTB water calorimeter for the absolute determination of absorbed dose to water in 60Co radiation Metrologia 43 259
[8] Krauss A and Kapsch R P 2008 Calorimetric determination of kQ factors for NE 2561 and NE 2571 ionization chambers in 5 cm × 5 cm and 10 cm × 10 cm radiotherapy beams of 8 MV and 16 MV photons Phys. Med. Biol. 53 1151
[16] Kessler C, Allisy-Roberts P J, Burns D T, Guerra A S, Laitano R F and Pimpinella M 2010 Comparison of the standards for absorbed dose to water of the ENEA-INMRI (Italy) and the BIPM for 60Co gamma rays Metrologia 47 06002
[17] Kessler C, Allisy-Roberts P J, Steurer A, Baumgartner A, Tiefenboeck W and Gabris F 2010 Comparison of the standards for absorbed dose to water of the BEV Austria and the BIPM for 60Co gamma rays Metrologia 47 06017
[18] Allisy-Roberts P J, Kessler C, Burns D T, Berlyand V and Berlyand A 2010 Comparison of the standards for absorbed dose to water of the VNIIIPTRI and the BIPM for 60Co γ-rays Metrologia 47 06003
[21] Pearce J A D, Shipley D R and Duane S 2011 Transfer of the UK absorbed dose primary standard for photon beams from the research linac to the clinical linac at NPL Metrologia 48 365
[22] Kessler C, Allisy P J, Burns D T, Duane S and Manning J 2012 Comparison of the standards for absorbed dose to water of the NUL (UK) and the BIPM for 60Co γ-rays Metrologia 49 06008
[29] Allisy-Roberts P J, Burns D T, Kessler C, Delaunay F and Leroy E 2005 Comparison of the standards for absorbed dose to water of the BNM-LNHB and the BIPM for 60Co γ-rays Metrologia 42 60006
[32] Daures J, Ostrowsky A and Rapp B 2012 Small section graphite calorimeter (GR-10) at LNE-LNHB for measurements in small beams for IMRT Metrologia 49 S174
[34] Delaunay F, Gouriou J, Le Roy M, Ostrowsky A, Sommier L, Vermes D, Kapsch R P, Krauss A and Illemann J 2012 Comparison of absorbed dose to water units for Co-60 and
high-energy x-rays between PTB and LNE-LNHB
Metrologia 49 S203
[40] Tola F, Poumaréde B, Habib B and Gnar M 2009 Optimization of Monte Carlo codes PENEOPE 2006 and PENFAST by parallelization and reduction variance implementation 2nd European Workshop on Monte Carlo Treatment Planning (Cardiff, UK, 19–21 October 2009)
[49] Seltzer S M and Berger M J 1986 Bremsstrahlung energy spectra from electrons with kinetic energy from 1 keV to 10 GeV incident on screened nuclei and orbital electrons of neutral atoms with Z = 1–100 At. Data Nucl. Data Tables 35 345
[52] Recommended data by the Decay Data Evaluation Project www.nucleide.org/NucData.htm
[57] Muir B R and Rogers D W O 2010 Monte Carlo calculations of kQ, the beam quality conversion factor Med. Phys. 37 5939
[63] Kessler C, Burns D T, Delaunay F and Doiano M 2013 Key comparison BIPM.R1(1)-K4 of the absorbed dose to water standards of the LNE-LNHB, France and the BIPM in 40Co gamma radiation Metrologia 50 06019
[64] Picard S, Burns D T, Roger P, Allisy-Roberts P J, Kapshch P R and Krauss A 2011 Key comparison BIPM.R1(1)-K6 of the standards for absorbed dose to water of the PTB, Germany and the BIPM for accelerator photon beams Metrologia 48 06020
[66] Picard S, Burns D T, Roger P, Bateham F B, Tosh R E and Chen-Mayer H 2013 Key comparison BIPM.R1(1)-K6 of the standards for absorbed dose to water of the NIST, USA and the BIPM in accelerator photon beams Metrologia 50 06004