Skip to Main content Skip to Navigation
Conference papers

Uncovering Like-minded Political Communities on Twitter

Abstract : Stance detection systems often integrate social clues in their algorithms. While the influence of social groups on stance is known, there is no evaluation of how well state-of-the-art community detection algorithms perform in terms of detecting like-minded communities, i.e. communities that share the same stance on a given subject. We used Twitter's social interactions to compare the results of community detection algorithms on datasets on the Scottish Independence Referendum and US Midterm Elections. Our results show that algorithms relying on information diffusion perform better for this task and confirm previous observations about retweets being better vectors of stance than mentions.
Document type :
Conference papers
Complete list of metadatas
Contributor : Léna Le Roy <>
Submitted on : Friday, July 6, 2018 - 11:52:19 AM
Last modification on : Friday, December 11, 2020 - 10:52:02 AM

Links full text



O. Fraisier, G. Cabanac, Yoann Pitarch, R. Besançon, M. Boughanem. Uncovering Like-minded Political Communities on Twitter. Proceedings of the ACM SIGIR International Conference on Theory of Information Retrieval, Oct 2017, Amsterdam, Netherlands. pp.261-264, ⟨10.1145/3121050.3121091⟩. ⟨cea-01831838⟩



Record views