J. J. Nowak, R. P. Robertazzi, J. Z. Sun, G. Hu, J. H. Park et al., Dependence of Voltage and Size on Write Error Rates in Spin-Transfer Torque Magnetic Random-Access Memory, IEEE Magnetics Letters, vol.7, pp.7-2016
DOI : 10.1109/LMAG.2016.2539256

A. G. Anderson, R. L. Garwin, E. L. Hahn, J. W. Horton, G. L. Tucker et al., Spin Echo Serial Storage Memory, Journal of Applied Physics, vol.18, issue.11, pp.1324-1338, 1955.
DOI : 10.1103/PhysRev.93.639

S. Fernbach and W. G. Proctor, Spin???Echo Memory Device, Journal of Applied Physics, vol.70, issue.2, pp.170-181, 1955.
DOI : 10.1103/PhysRev.73.679

D. Deutsch and Q. Theory, Proc. Roy. Soc. A: Math. Phys, p.70, 1818.

I. L. Chuang and M. A. Nielsen, Quantum Computation and Quantum Information, pp.59-2198, 2000.

C. H. Bennett and G. Brassard, Quantum Cryptography, Scientific American, vol.267, issue.4, pp.3153-3163, 1985.
DOI : 10.1038/scientificamerican1092-50

E. Farhi and A. W. Harrow, Quantum Supremacy Through the Quantum Approximate Optimization Algorithm

S. Wiesner, Conjugate coding, ACM SIGACT News, vol.15, issue.1, pp.78-88, 1983.
DOI : 10.1145/1008908.1008920

G. Wolfowicz, A. M. Tyryshkin, R. E. George, H. Riemann, N. V. Abrosimov et al.,

, Microwave pulses are sent down an attenuated line to the base temperature of a dilution fridge, and the reflected pulses and emitted spin echo are passed to a quantum-limited Josephson Parametric Amplifier (JPA), which operates in reflection. The amplified signal is then further amplified at 4 K using a high electron mobility (HEMT) amplifier, and again at 300 K using a low noise amplifier (LNA), before being analysed through an IQ-mixer. (B) Example two-pulse Hahn echo experiment measured on such a set-up, using a microresonator where $ 230 spins are on-resonance, contributing to the echo signal. The signal-to-noise is 0.9 per single-shot echo. Figure adapted from Refs. [86,81]. transitions in silicon-based spin qubits, Fig. 9. (A) Schematic showing experimental set-up for high-sensitivity ESR at milliKelvin temperatures, pp.561-564, 2013.

N. Bar-gill, L. M. Pham, A. Jarmola, D. Budker, and R. L. Walsworth, Solid-state electronic spin coherence time approaching one second, Nature Communications, vol.314, issue.1, 2013.
DOI : 10.1126/science.1131871

K. Saeedi, S. Simmons, J. Z. Salvail, P. Dluhy, H. Riemann et al., Room-Temperature Quantum Bit Storage Exceeding 39 Minutes Using Ionized Donors in Silicon-28, Science, vol.13, issue.1, pp.830-833, 2013.
DOI : 10.1103/PhysRevB.13.1681

M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, E. Sarah et al., Optically addressable nuclear spins in a solid with a six-hour coherence time, Nature, vol.13, issue.7533, pp.7533-2015
DOI : 10.1088/1367-2630/13/1/013013

A. Grodecka-grad, E. Zeuthen, and A. S. Sørensen, High-Capacity Spatial Multimode Quantum Memories Based on Atomic Ensembles, Physical Review Letters, vol.109, issue.13, 2012.
DOI : 10.1038/299802a0

B. Julsgaard, C. Grezes, P. Bertet, and K. Mølmer, Quantum Memory for Microwave Photons in an Inhomogeneously Broadened Spin Ensemble, Physical Review Letters, vol.110, issue.25, 2013.
DOI : 10.1038/nphys2026

URL : https://hal.archives-ouvertes.fr/cea-01477724

H. Briegel, W. Dür, J. I. Cirac, and P. Zoller, Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication, Physical Review Letters, vol.279, issue.26, pp.5932-5935, 1998.
DOI : 10.1126/science.279.5348.205

N. Sangouard, C. Simon, H. De-riedmatten, and N. Gisin, Quantum repeaters based on atomic ensembles and linear optics, Reviews of Modern Physics, vol.8, issue.1, pp.33-80, 2011.
DOI : 10.1103/PhysRevLett.71.4287

URL : http://arxiv.org/pdf/0906.2699v2.pdf

H. Kimble, The quantum internet, Nature, vol.137, issue.7198, pp.1023-1030, 2008.
DOI : 10.1088/1464-4266/1/4/323

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov et al.,

J. Jelezko and . Wrachtrup, Ultralong spin coherence time in isotopically engineered diamond, Nat. Mater, vol.8, pp.383-387, 2009.

A. M. Tyryshkin, J. J. Morton, S. C. Benjamin, A. Ardavan, G. A. Briggs et al.,

S. A. Ager and S. Lyon, Coherence of spin qubits in silicon, J. Phys.: Condens. Matter, vol.18, issue.21, 2006.

A. M. Tyryshkin, S. Tojo, J. J. Morton, H. Riemann, N. V. Abrosimov et al., Electron spin coherence exceeding seconds in high-purity silicon, Nature Materials, vol.29, issue.2, pp.143-147, 2011.
DOI : 10.1063/1.1680545

J. Bollinger, J. Prestage, W. Itano, and D. Wineland, Laser-Cooled-Atomic Frequency Standard, Physical Review Letters, vol.24, issue.10, pp.1000-1003, 1985.
DOI : 10.1063/1.863565

J. M. Zadrozny, A. T. Gallagher, T. D. Harris, and D. E. Freedman, A Porous Array of Clock Qubits, Journal of the American Chemical Society, vol.139, issue.20, pp.7089-7094, 2017.
DOI : 10.1021/jacs.7b03123

F. Dolde, H. Fedder, M. M. Doherty, T. Nöbauer, F. Rempp et al., Electric-field sensing using single diamond spins, Nature Physics, vol.7, issue.6, pp.459-463, 2011.
DOI : 10.1103/PhysRevB.83.081304

P. Jamonneau, M. Lesik, J. P. Tetienne, I. Alvizu, L. Mayer et al., Competition between electric field and magnetic field noise in the decoherence of a single spin in diamond, Physical Review B, vol.93, issue.2, 2016.
DOI : 10.1103/PhysRevB.82.115449

URL : https://hal.archives-ouvertes.fr/hal-01271919

J. J. Morton, A. M. Tyryshkin, R. M. Brown, S. Shankar, B. W. Lovett et al., Solid-state quantum memory using the 31P nuclear spin, Nature, vol.152, issue.7216, pp.1085-1088, 2008.
DOI : 10.1038/nature07295

H. Wu, R. George, A. Ardavan, J. H. Wesenberg, K. Moelmer et al., Storage of Multiple Coherent Microwave Excitations in an Electron Spin Ensemble, Physical Review Letters, vol.105, issue.14, 2010.
DOI : 10.1103/PhysRevLett.105.140502

R. Ward, A. Bowman, E. Sozudogru, H. El-mkami, T. Owen-hughes et al., EPR distance measurements in deuterated proteins, Journal of Magnetic Resonance, vol.207, issue.1, pp.164-167, 2010.
DOI : 10.1016/j.jmr.2010.08.002

W. Harneit, Fullerene-based electron-spin quantum computer, Physical Review A, vol.334, issue.3, 2002.
DOI : 10.1016/S0009-2614(00)01406-8

M. Mehring, W. Scherer, A. Weidinger, and J. J. , Pseudoentanglement of spin states in the multilevel 15 N@c 60 system, Phys. Rev. Lett, vol.93, 2004.

. Briggs, Electron spin relaxation of N@C60 in CS2, J. Chem. Phys, vol.124124, issue.11, 2006.

R. M. Brown, A. M. Tyryshkin, K. Porfyrakis, E. M. Gauger, B. W. Lovett et al., Coherent state transfer between an electron and nuclear spin in 15 N@c 60, Phys. Rev. Lett, vol.106, issue.110504, 2011.
DOI : 10.1103/physrevlett.106.110504

URL : https://link.aps.org/accepted/10.1103/PhysRevLett.106.110504

M. Shiddiq, D. Komijani, T. Duan, A. Gaita-ari, /. No et al., Enhancing coherence in molecular spin qubits via atomic clock transitions, Nature, vol.178, issue.195, 2016.
DOI : 10.1016/j.jmr.2005.08.013

J. M. Zadrozny, J. Niklas, O. G. Poluektov, and D. E. Freedman, Millisecond Coherence Time in a Tunable Molecular Electronic Spin Qubit, ACS Central Science, vol.1, issue.9, pp.488-492, 2015.
DOI : 10.1021/acscentsci.5b00338

URL : https://doi.org/10.1021/acscentsci.5b00338

J. M. Zadrozny, A. T. Gallagher, T. D. Harris, and D. E. Freedman, A Porous Array of Clock Qubits, Journal of the American Chemical Society, vol.139, issue.20, pp.7089-7094, 2017.
DOI : 10.1021/jacs.7b03123

URL : https://doi.org/10.1021/jacs.7b03123

B. Andreas, Y. Azuma, G. Bartl, P. Becker, H. Bettin et al., Waseda, Determination of the avogadro constant by counting the atoms in a 28 Si crystal, Phys. Rev. Lett, vol.106, issue.030801, 2011.

R. E. George, W. Witzel, H. Riemann, N. V. Abrosimov, N. Nötzel et al., Electron Spin Coherence and Electron Nuclear Double Resonance of Bi Donors in Natural Si, Physical Review Letters, vol.15, issue.6, 2010.
DOI : 10.1103/PhysRev.130.58

URL : http://arxiv.org/pdf/1004.0340

S. Meiboom and D. Gill, Modified Spin???Echo Method for Measuring Nuclear Relaxation Times, Review of Scientific Instruments, vol.233, issue.8, 1958.
DOI : 10.1103/RevModPhys.26.167

W. Ma, G. Wolfowicz, S. Li, J. J. Morton, and R. Liu, Classical nature of nuclear spin noise near clock transitions of Bi donors in silicon, 2015) 161403
DOI : 10.1038/nnano.2011.22

T. F. Watson, B. Weber, Y. Hsueh, L. C. Hollenberg, R. Rahman et al., Atomically engineered electron spin lifetimes of 30 s in silicon, Sci, Adv, vol.3, issue.3
DOI : 10.1126/sciadv.1602811

URL : http://advances.sciencemag.org/content/3/3/e1602811.full.pdf

J. J. Pla, K. Y. Tan, J. P. Dehollain, W. H. Lim, J. J. Morton et al., A single-atom electron spin qubit in silicon, Nature, vol.74, issue.7417, pp.541-545, 2012.
DOI : 10.1103/PhysRevB.74.045311

URL : http://arxiv.org/pdf/1305.4481

J. J. Pla, K. Y. Tan, J. P. Dehollain, W. H. Lim, J. J. Morton et al., High-fidelity readout and control of a nuclear spin qubit in silicon, Nature, vol.470, issue.7445, 2013.
DOI : 10.1038/nature09696

M. Steger, K. Saeedi, M. L. Thewalt, J. J. Morton, H. Riemann et al., Quantum Information Storage for over 180 s Using Donor Spins in a 28Si "Semiconductor Vacuum", Science, vol.74, issue.21, pp.1280-1283, 2012.
DOI : 10.1103/PhysRevLett.74.4101

F. Jelezko, T. Gaebel, I. Popa, J. Gruber, and . Wrachtrup, Observation of Coherent Oscillations in a Single Electron Spin, Physical Review Letters, vol.5, issue.7, pp.1-4, 2004.
DOI : 10.1103/PhysRevB.47.8816

L. Robledo, L. Childress, H. Bernien, B. Hensen, P. A. Alkemade et al., Highfidelity projective read-out of a solid-state spin quantum register, Nature, vol.477, issue.547, 2011.
DOI : 10.1038/nature10401

T. H. Taminiau, J. Cramer, T. Van-der-sar, V. V. Dobrovitski, and R. Hanson, Universal control and error correction in multi-qubit spin registers in diamond, Nature Nanotechnology, vol.4, issue.3, pp.171-176, 2014.
DOI : 10.1038/ncomms2771

URL : http://arxiv.org/pdf/1309.5452

B. Pingault, D. Jarausch, C. Hepp, L. Klintberg, J. N. Becker et al., Coherent control of the silicon-vacancy spin in diamond, Nature Communications, vol.477, p.15579, 2017.
DOI : 10.1038/nature10401

URL : http://www.nature.com/articles/ncomms15579.pdf

L. J. Rogers, K. D. Jahnke, M. H. Metsch, A. Sipahigil, J. M. Binder et al., All-Optical Initialization, Readout, and Coherent Preparation of Single Silicon-Vacancy Spins in Diamond, Physical Review Letters, vol.113, issue.26, 2014.
DOI : 10.1103/PhysRevLett.113.263601

URL : http://doi.org/10.1103/physrevlett.113.263602

P. Siyushev, M. H. Metsch, A. Ijaz, J. M. Binder, M. K. Bhaskar et al., Optical and microwave control of germanium-vacancy center spins in diamond. <1612.02947>

M. K. Bhaskar, D. D. Sukachev, A. Sipahigil, R. E. Evans, M. J. Burek et al., Quantum Nonlinear Optics with a Germanium-Vacancy Color Center in a Nanoscale Diamond Waveguide, Physical Review Letters, vol.118, issue.22, p.223603, 2017.
DOI : 10.1021/nl0717255

J. N. Becker, B. Pingault, D. Groß, M. Gündogan, N. Kukharchyk et al., All-optical Control of the Siliconvacancy Spin in Diamond at Millikelvin Temperatures. <1708.08263>

D. D. Sukachev, A. Sipahigil, C. T. Nguyen, M. K. Bhaskar, R. E. Evans et al., The Silicon-vacancy Spin Qubit in Diamond: Quantum Memory Exceeding Ten Milliseconds and Single-shot State Readout

B. C. Rose, D. Huang, Z. Zhang, A. M. Tyryshkin, S. Sangtawesin et al., Observation of An Environmentally Insensitive Solid State Spin Defect in Diamond. <1706.01555>

H. Seo, A. Falk, P. Klimov, K. Miao, G. Galli et al., Quantum decoherence dynamics of divacancy spins in silicon carbide, Nature Communications, vol.6, issue.12935, 2016.
DOI : 10.1038/srep20803

M. Hedges, J. Longdell, Y. Li, and M. Sellars, Efficient quantum memory for light, Nature, vol.74, issue.7301, pp.1052-1056, 2010.
DOI : 10.1103/PhysRevA.78.032337

C. O-'brien, N. Lauk, S. Blum, G. Morigi, and M. Fleischhauer, Interfacing superconducting qubits and telecom photons via a rare-earth-doped crystal, Phys. Rev. Lett, vol.113, issue.063603, 2014.

Y. Chen, X. Fernandez-gonzalvo, and J. J. , Coupling erbium spins to a three-dimensional superconducting cavity at zero magnetic field, Physical Review B, vol.58, issue.7, 2016.
DOI : 10.1038/nature10561

M. Ran?icran?ic´ran?ic´, M. Hedges, R. L. Ahlefeldt, and M. J. Sellars, Coherence time of over a second in a telecom-compatible quantum memory storage material

G. Wolfowicz, H. Maier-flaig, R. Marino, A. Ferrier, H. Vezin et al., Coherent Storage of Microwave Excitations in Rare-Earth Nuclear Spins, 2015) 170503
DOI : 10.1103/PhysRevLett.113.043001

URL : https://hal.archives-ouvertes.fr/hal-01187464

S. Bertaina, S. Gambarelli, A. Tkachuk, I. Kurkin, B. Malkin et al., Rare-earth solid-state qubits, Nature Nanotechnology, vol.137, issue.95, pp.39-42, 2007.
DOI : 10.1103/PhysRev.137.A61

URL : https://hal.archives-ouvertes.fr/hal-00136435

H. Lim, S. Welinski, M. Afzelius, P. Goldner, and J. J. Morton, Coherent spin ensembles of ytterbium ions in yttrium orthosilicate, 2017.

R. M. Jock, , 2015.

M. Veldhorst, J. C. Hwang, C. H. Yang, .. W. Leenstra, B. De-ronde et al., An addressable quantum dot qubit with fault-tolerant control-fidelity, Nature Nanotechnology, vol.4, issue.12, pp.981-985, 2014.
DOI : 10.1103/PhysRevLett.97.176404

E. Kawakami, P. Scarlino, D. Ward, F. R. Braakman, D. E. Savage et al., Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot, Nature Nanotechnology, vol.85, issue.9, pp.666-670, 2014.
DOI : 10.1103/RevModPhys.85.623

M. Urdampilleta, A. Chatterjee, C. C. Lo, T. Kobayashi, J. Mansir et al., Charge Dynamics and Spin Blockade in a Hybrid Double Quantum Dot in Silicon, Physical Review X, vol.5, issue.3
DOI : 10.1103/PhysRevX.4.021044

S. Muralidharan, L. Li, J. Kim, N. Lütkenhaus, M. Lukin et al., Optimal architectures for long distance quantum communication, Scientific Reports, vol.453, issue.1, 2016.
DOI : 10.1038/nature07127

P. Rabl, D. Demille, J. M. Doyle, M. D. Lukin, R. J. Schoelkopf et al., Hybrid Quantum Processors: Molecular Ensembles as Quantum Memory for Solid State Circuits, Physical Review Letters, vol.2, issue.3, 2006.
DOI : 10.1103/PhysRevLett.94.083001

C. Grezes, Y. Kubo, B. Julsgaard, T. Umeda, J. Isoya et al.,

K. Esteve, P. Moelmer, and . Bertet, Towards a spin-ensemble quantum memory for superconducting qubits, C.R. Phys, vol.17, issue.7, pp.693-704, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01386614

Y. Kubo, C. Grezes, A. Dewes, T. Umeda, J. Isoya et al.,

S. Abe, T. Onoda, V. Ohshima, A. Jacques, J. Dréau et al., Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble, Phys. Rev. Lett, vol.107, issue.220501, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00710242

J. H. Wesenberg, A. Ardavan, G. A. Briggs, J. J. Morton, R. J. Schoelkopf et al., Quantum Computing with an Electron Spin Ensemble, Physical Review Letters, vol.103, issue.7, 2009.
DOI : 10.1103/PhysRevLett.100.227006

C. Grezes, B. Julsgaard, Y. Kubo, M. Stern, T. Umeda et al.,

E. Bertet, H. Abe, A. Wu, J. Ardavan, and . Morton, 021049, https://doi.org/10.1103/ PhysRevX.4.021049, URL <https Electron spin ensemble strongly coupled to a three-dimensional microwave cavity, Phys. Rev. X Appl. Phys. Lett, vol.4, 2014.

D. I. Schuster, A. P. Sears, E. Ginossar, L. Dicarlo, L. Frunzio et al., Highcooperativity coupling of electron-spin ensembles to superconducting cavities, Phys. Rev. Lett, vol.105, issue.140501, 2010.

A. Sigillito, A. Tyryshkin, T. Schenkel, A. Houck, and S. Lyon, All-electric control of donor nuclear spin qubits in silicon, Nat. Nano Adv. online publication SP-EP . https

A. Bienfait, J. J. Pla, Y. Kubo, X. Zhou, M. Stern et al., Controlling spin relaxation with a cavity, Nature, vol.141, issue.7592, p.74, 2016.
DOI : 10.1063/1.4891866

URL : https://hal.archives-ouvertes.fr/cea-01483751

N. Samkharadze, A. Bruno, P. Scarlino, G. Zheng, D. P. Divincenzo et al., High-Kinetic-Inductance Superconducting Nanowire Resonators for Circuit QED in a Magnetic Field, Physical Review Applied, vol.5, issue.4, 2016.
DOI : 10.1103/PhysRevB.38.9311

A. T. Asfaw, A. J. Sigillito, A. M. Tyryshkin, T. Schenkel, and S. A. Lyon, Multi-frequency spin manipulation using rapidly tunable superconducting coplanar waveguide microresonators, Applied Physics Letters, vol.23, issue.3
DOI : 10.1103/PhysRevA.88.062324

C. Eichler, A. J. Sigillito, S. A. Lyon, and J. R. Petta, Electron spin resonance at the level of 10 4 spins using low impedance superconducting resonators, Phys. Rev. Lett, vol.118, issue.037701, 2017.

E. M. Purcell, Spontaneous Emission Probabilities at Radio Frequencies, Phys. Rev, vol.69, issue.681, 1946.
DOI : 10.1007/978-1-4615-1963-8_40

P. Goy, J. M. Raimond, M. Gross, and S. Haroche, Observation of Cavity-Enhanced Single-Atom Spontaneous Emission, Physical Review Letters, vol.43, issue.24, 1903.
DOI : 10.1103/PhysRevLett.43.343

A. Bienfait, , 2017.

S. Probst, A. Bienfait, P. Campagne-ibarcq, J. J. Pla, B. Albanese et al., Inductive-detection electron-spin resonance spectroscopy with 65 spins/ Hz sensitivity, Applied Physics Letters, vol.111, issue.20, 2017.
DOI : 10.1063/1.4769208

URL : https://hal.archives-ouvertes.fr/hal-01664352

Y. Kubo, F. R. Ong, P. Bertet, D. Vion, V. Jacques et al., Strong Coupling of a Spin Ensemble to a Superconducting Resonator, Physical Review Letters, vol.105, issue.14, 2010.
DOI : 10.1103/PhysRevLett.104.070801

URL : https://hal.archives-ouvertes.fr/hal-00710240

O. W. Kennedy, J. Burnett, J. C. Fenton, P. A. Warburton, J. J. Morton et al., Tuneable superconducting resonators based upon a Ne FIB fabricated constriction nanoSQUID

T. F. Prisner, M. Rohrer, and K. Möbius, Pulsed 95 GHz high-field EPR heterodyne spectrometer with high spectral and time resolution, Applied Magnetic Resonance, vol.1, issue.2-3, pp.167-183, 1994.
DOI : 10.1002/j.1538-7305.1957.tb02406.x

G. A. Rinard, R. W. Quine, S. S. Eaton, and G. R. Eaton, Frequency Dependence of EPR Signal Intensity, 250 MHz to 9.1 GHz, Journal of Magnetic Resonance, vol.156, issue.1, pp.113-121, 2002.
DOI : 10.1006/jmre.2002.2530

A. Bienfait, J. J. Pla, Y. Kubo, M. Stern, X. Zhou et al.,

. Bertet, Reaching the quantum limit of sensitivity in electron spin resonance, Nat. Nanotechnol, vol.11, issue.253, 2016.
URL : https://hal.archives-ouvertes.fr/cea-01366689

O. Yaakobi, L. Friedland, C. Macklin, and I. Siddiqi, Parametric amplification in Josephson junction embedded transmission lines, Physical Review B, vol.87, issue.14, 2013.
DOI : 10.1038/nphys2424

X. Zhou, V. Schmitt, P. Bertet, D. Vion, W. Wustmann et al., High-gain weakly nonlinear flux-modulated Josephson parametric amplifier using a SQUID array, Physical Review B, vol.89, issue.21, 2014.
DOI : 10.1103/PhysRevB.83.134501

URL : https://hal.archives-ouvertes.fr/hal-01010903

P. Haikka, Y. Kubo, A. Bienfait, P. Bertet, and K. Mølmer, Proposal for detecting a single electron spin in a microwave resonator, Physical Review A, vol.95, issue.2, 2017.
DOI : 10.1103/PhysRevA.94.032103

URL : https://hal.archives-ouvertes.fr/cea-01491278

J. M. Franck, R. P. Barnes, T. J. Keller, T. Kaufmann, and S. Han, Active cancellation ??? A means to zero dead-time pulse EPR, Journal of Magnetic Resonance, vol.261, pp.199-204, 2015.
DOI : 10.1016/j.jmr.2015.07.005

URL : http://europepmc.org/articles/pmc4688155?pdf=render

S. E. De-graaf, A. V. Danilov, A. Adamyan, T. Bauch, and S. E. Kubatkin, Magnetic field resilient superconducting fractal resonators for coupling to free spins, Journal of Applied Physics, vol.112, issue.12, 2012.
DOI : 10.1103/PhysRevB.34.1948

J. Pla, A. Bienfait, G. Pica, J. Mansir, F. Mohiyaddin et al., Strain-induced Spin Resonance Splittings in Silicon Devices. <1608.07346>

J. Mansir, P. Conti, Z. Zeng, J. Pla, P. Bertet et al., Linear hyperfine tuning of donor spins in silicon using hydrostatic strain. <1706.01555>

G. Wolfowicz, UCL, 2016.