, The obtained formula includes two terms: the right-hand side of (59) (with T A (p, ?, 0) = T R (p, ?, 0) given by (63) and L ?z (p, ?) = 1) plus a small additional term equal to, opposite one another to form a slit

, ? ? 90 ? , so the intensity is not zero at the minima (see also

M. Born and E. Wolf, Principles of Optics

A. Sommerfeld, Chap. 5, Secs, vol.34, p.38, 1954.

L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, pp.59-61, 1962.

A. Sommerfeld, Mathematische Theorie der Diffraction, Math. Ann, vol.47, p.317, 1896.

W. Pauli, On Asymptotic Series for Functions in the Theory of Diffraction of Light, Phys. Rev, vol.54, p.924, 1938.

H. Levine and J. Schwinger, On the Theory of Diffraction by an Aperture in an Infinite Plane Screen I, Phys. Rev, vol.74, issue.8, p.958, 1948.

H. Levine and J. Schwinger, On the Theory of Diffraction by an Aperture in an Infinite Plane Screen II, Phys. Rev, vol.75, issue.9, p.1423, 1949.

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, pp.74-75, 1960.

J. B. Keller, Geometrical Theory of Diffraction, J. Opt. Soc. Am, vol.52, issue.2, p.116, 1962.

P. S. Epstein and P. Ehrenfest, The quantum theory of the Fraunhofer diffraction, Proc. Nat. Acad. Sci, vol.10, p.133, 1924.

R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, 1965.

A. O. Barut and S. Basri, Path integrals and quantum interference, Am. J. Phys, vol.60, p.896, 1992.

M. Beau, Feynman path integral approach to electron diffraction for one and two slits: analytical results, Eur. J. Phys, vol.33, p.1023, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00630741

J. H. Field, Description of diffraction grating experiments for photons and electrons in Feynman's space-time formulation of quantum mechanics: The quantum origins of classical wave theories of light and massive particles, Eur. J. Phys, vol.34, p.1507, 2013.

C. Philippidis, C. Dewdney, and B. J. Hiley, Quantum interference and the quantum potential, Nuov. Cim. B, vol.52, p.15, 1979.

A. S. Sanz, F. Borondo, and S. Miret-artés, Particle diffraction studied using quantum trajectories, J. Phys.: Condens. Matter, vol.14, p.6109, 2002.

K. Mathew and M. V. John, Interfering Quantum Trajectories Without Which-Way Information, Found. Phys, vol.47, p.873, 2017.

X. Wu, B. Zhang, X. Liu, B. Liu, C. Zhang et al., Quantum Theory of Neutron Diffraction, Int. J. Mod. Phys. B, vol.23, issue.15, p.3255, 2009.

L. Wang, B. Zhang, Z. Hua, J. Li, X. Liu et al., Quantum Theory of Electronic Multiple-Slit Diffraction, Prog. Theor. Phys, vol.121, issue.4, p.685, 2009.

X. Wu, B. Zhang, J. Yang, L. Chi, X. Liu et al., Quantum Theory of Light Diffraction, J. Mod. Opt, vol.57, issue.20, p.2082, 2010.

T. V. Marcella, Quantum interference with slits, Eur. J. Phys, vol.23, p.615, 2002.

L. A. Deacetis and I. Lazar, Obliquity Factors of Huygens and Kirchhoff Theories Applied to Experimental Diffraction by Two Long, Coplanar, Parallel Strips, Am. J. Phys, vol.36, issue.9, p.830, 1968.

V. Shaoulov, R. V. Satya, G. Schiavone, E. Clarkson, and J. Rolland, Model of wide-angle optical field propagation using scalar diffraction theory, Opt. Eng, vol.43, issue.7, p.1561, 2004.

C. Cohen-tannoudji, B. Diu, and F. Laloë, Quantum Mechanics, p.265, 1977.
URL : https://hal.archives-ouvertes.fr/hal-00008879

T. Rothman and S. Boughn, Quantum interference with slits' revisited, Eur. J. Phys, vol.32, p.107, 2011.

W. Heisenberg, The Physical Principles of the Quantum Theory, 1930.

N. Bohr, Can Quantum-Mechanical Description of Physical Reality be Considered Complete?, Phys. Rev, vol.48, p.696, 1935.

C. W. Mccutchen, Generalized Aperture and the ThreeDimensional Diffraction Image, J. Opt. Soc. Am, vol.54, issue.2, p.240, 1964.

J. Lin, X. Yuan, S. Kou, C. J. Sheppard, O. G. Rodríguez-herrera et al., Direct calculation of a three-dimensional diffracted field, Opt. Lett, vol.36, issue.8, p.1341, 2011.

T. D. Newton and E. P. Wigner, Localized States for Elementary Systems, Rev. Mod. Phys, vol.21, issue.3, p.400, 1949.

I. Bialynicki-birula, On the wave function of the photon, Acta Phys. Pol, vol.86, p.97, 1994.

J. E. Sipe, Photon wave functions, Phys. Rev. A, vol.52, issue.3, p.1875, 1995.

I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products, 1994.

M. Tanabashi, Phys. Rev. D, vol.98, p.30001, 2018.