J. Boczkowski and S. Lanone, Respiratory toxicities of nanomaterials -A focus on carbon nanotubes Adv Drug Deliv Rev, pp.1694-1699, 2012.

H. Shi, R. Magaye, and V. Castranova, Titanium dioxide nanoparticles: a review of current toxicological data, Particle and Fibre Toxicology, vol.10, issue.1, pp.15-1743, 2013.
DOI : 10.1016/j.tiv.2009.12.007

J. Muller, F. Huaux, and N. Moreau, Respiratory toxicity of multi-wall carbon nanotubes, Toxicology and Applied Pharmacology, vol.207, issue.3, pp.221-252, 2005.
DOI : 10.1016/j.taap.2005.01.008

E. Park, J. Yoon, and K. Choi, Induction of chronic inflammation in mice treated with titanium dioxide nanoparticles by intratracheal instillation. Toxicology, Jun, vol.16260, issue.1-309, pp.37-46, 2009.

S. Lanone, P. Andujar, and A. Kermanizadeh, Determinants of carbon nanotube toxicity. Adv Drug Deliv Rev, pp.169-409, 2013.

A. Shvedova, V. Kagan, and B. Fadeel, Close Encounters of the Small Kind: Adverse Effects of Man-Made Materials Interfacing with the Nano-Cosmos of Biological Systems, Annual Review of Pharmacology and Toxicology, vol.50, issue.1, pp.63-88, 2010.
DOI : 10.1146/annurev.pharmtox.010909.105819

N. Mizushima, T. Yoshimori, and B. Levine, Methods in Mammalian Autophagy Research, Cell, vol.140, issue.3, pp.313-339, 2010.
DOI : 10.1016/j.cell.2010.01.028

A. Choi, S. Ryter, B. Levine, P. Porras, M. Choi et al., Autophagy in Human Health and Disease Autophagy in Pulmonary Diseases, New England Journal of Medicine. American Journal of Respiratory and Critical Care Medicine, vol.368, issue.7, pp.651-662201512, 2013.

V. Cohignac, M. Landry, and J. Boczkowski, Autophagy as a possible underlying mechanism of nanomaterial toxicity Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity, Nanomaterials. Part Fibre Toxicol Jun, vol.49, issue.141, pp.548-58220, 2012.

K. Yu, J. Kim, and H. Seo, PubMed PMID: 22697169; Eng. 12 Differential toxic responses between pristine and functionalized multiwall nanotubes involve induction of autophagy accumulation in murine lung, J Toxicol Environ Health A, vol.76, issue.23, pp.1743-8977, 1186.

X. Ma, Y. Wu, and S. Jin, Gold Nanoparticles Induce Autophagosome Accumulation through Size-Dependent Nanoparticle Uptake and Lysosome Impairment, ACS Nano, vol.5, issue.11, pp.8629-8668, 2011.
DOI : 10.1021/nn202155y

S. Mittal, P. Sharma, and R. Tiwari, Impaired lysosomal activity mediated autophagic flux disruption by graphite carbon nanofibers induce apoptosis in human lung epithelial cells through oxidative stress and energetic impairment [journal article]. Particle and Fibre Toxicology, pp.15-25, 2017.

M. Orecna, S. Paoli, and O. Janouskova, Toxicity of carboxylated carbon nanotubes in endothelial cells is attenuated by stimulation of the autophagic flux with the release of nanomaterial in autophagic vesicles, Nanomedicine: Nanotechnology, Biology and Medicine, vol.10, issue.5, 2014.
DOI : 10.1016/j.nano.2014.02.001

C. Bussy, E. Paineau, and J. Cambedouzou, Intracellular fate of carbon nanotubes inside murine macrophages: pH-dependent detachment of iron catalyst nanoparticles, Particle and Fibre Toxicology, vol.10, issue.1, pp.24-1743, 2013.
DOI : 10.1016/j.sab.2006.12.002

URL : https://hal.archives-ouvertes.fr/inserm-00840223

J. Yu and T. Li, PubMed PMID: 23800198; Eng. 17 Distinct biological effects of different nanoparticles commonly used in cosmetics and medicine coatings, Cell Biosci, vol.1, issue.1, pp.1743-8977, 1186.

M. Landry, M. Pinault, and S. Tchankouo, Early signs of multi-walled carbon nanotbues degradation in macrophages, via an intracellular pH-dependent biological mechanism; importance of length and functionalization. Part Fibre Toxicol Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3 Autophagy and microtubules -new story, old players, Autophagy. J Cell Sci, vol.1331265, issue.20, pp.61452-4601071, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-01401938

H. Shen and N. Mizushima, At the end of the autophagic road: an emerging understanding of lysosomal functions in autophagy, Trends in Biochemical Sciences, vol.39, issue.2, pp.61-71
DOI : 10.1016/j.tibs.2013.12.001

I. Ganley, Autophagosome maturation and lysosomal fusion Essays in biochemistry, pp.65-78, 2013.

B. Shi, Q. Huang, and R. Birkett, SNAPIN is critical for lysosomal acidification and autophagosome maturation in macrophages Analysis of where and which types of proteinases participate in lysosomal proteinase processing using bafilomycin A1 and Helicobacter pylori Vac A toxin, Autophagy Journal of biochemistry, vol.13125, issue.24, pp.285-301770, 1999.

Q. Mu, G. Jiang, and L. Chen, Chemical basis of interactions between engineered nanoparticles and biological systems doi: 10.1021/cr400295a Single-walled carbon nanotubes and graphene oxides induce autophagosome accumulation and lysosome impairment in primarily cultured murine peritoneal macrophages, Chem Rev Toxicol Lett. Jun, vol.114221, issue.132, pp.7740-81118, 2013.

D. Klionsky, F. Abdalla, and H. Abeliovich, Guidelines for the use and interpretation of assays for monitoring autophagy, Autophagy, vol.4, issue.4, pp.10-4161, 2012.
DOI : 10.4161/auto.6.4.12244

URL : https://hal.archives-ouvertes.fr/hal-00214269

S. Kanno, S. Hirano, and S. Chiba, The role of Rho-kinases in IL-1beta release through phagocytosis of fibrous particles in human monocytes, Arch Toxicol, 2015.

Y. Dong, H. Sun, and X. Li, Carbon Nanomaterials on Actin Polymerization

, J Nanosci Nanotechnol. 2016, vol.16, issue.3, pp.2408-2425

J. Ilardi, S. Mochida, and Z. Sheng, Snapin: a SNARE-associated protein implicated in synaptic transmission. Nature neuroscience, Feb, vol.2, issue.2, pp.119-143, 1999.

B. Shi, Q. Huang, and P. Tak, SNAPIN: an endogenous toll-like receptor ligand in rheumatoid arthritis, Annals of the Rheumatic Diseases, vol.71, issue.8, pp.1411-1417, 2012.
DOI : 10.1136/annrheumdis-2011-200899

C. Farrera and B. Fadeel, It takes two to tango: Understanding the interactions between engineered nanomaterials and the immune system, European Journal of Pharmaceutics and Biopharmaceutics, vol.95, pp.3-12, 2015.
DOI : 10.1016/j.ejpb.2015.03.007

Y. Cui, H. Liu, and M. Zhou, Signaling pathway of inflammatory responses in the mouse liver caused by TiO2 nanoparticles, Journal of Biomedical Materials Research Part A, vol.5, issue.1, 2011.
DOI : 10.1002/jbm.a.32976

Y. Ze, L. Sheng, and X. Zhao, TiO2 nanoparticles induced hippocampal neuroinflammation in mice):e92230. doi: 10.1371/journal.pone.0092230. PubMed PMID: 24658543; PubMed Central PMCID: PMCPMC3962383. eng. 35 Multi-walled carbon nanotube induces nitrative DNA damage in human lung epithelial cells via HMGB1-RAGE interaction and Toll-like receptor 9 activation Particle and Fibre Toxicology, PLoS One, vol.913, issue.31, pp.16-26, 2014.

C. Castro, M. Pinault, and D. Porterat, The role of hydrogen in the aerosol-assisted chemical vapor deposition process in producing thin and densely packed vertically aligned carbon nanotubes, Carbon, vol.61
DOI : 10.1016/j.carbon.2013.05.040

URL : https://hal.archives-ouvertes.fr/hal-00955747

J. Glory, A. Mierczynska, and M. Pinault, Dispersion study of long and aligned multiwalled carbon nanotubes in water, of the Support and the Size of Gold Clusters on Catalytic Activity for Glucose Oxidation, pp.585-5943458, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00178993

L. Armand, M. Dagouassat, and E. Belade, Titanium Dioxide Nanoparticles Induce Matrix Metalloprotease 1 in Human Pulmonary Fibroblasts Partly via an Interleukin-1?????Dependent Mechanism, American Journal of Respiratory Cell and Molecular Biology, vol.105, issue.3, pp.10-1165, 2013.
DOI : 10.1016/S0002-9440(10)62371-1

I. Posadas, D. Rosa, S. , C. Terencio, and M. , B activation, British Journal of Pharmacology, vol.276, issue.Suppl 1, pp.1571-1579, 2003.
DOI : 10.1074/jbc.M101111200

W. Yue, A. Hamai, and G. Tonelli, Inhibition of the autophagic flux by salinomycin in breast cancer stem-like/progenitor cells interferes with their maintenance, Autophagy, vol.63, issue.5, pp.714-743
DOI : 10.1016/S0091-679X(08)61717-3

, Data are given as mean±standard deviation when applicable. ND, not detectable; /, not done; +, low ROS production

, Data in italics have already been published

, LAMP1 (red) Scale bar: 5 µm Arrowheads indicate colocalization of LC3 and LAMP1 staining, attesting to the fusion between autophagosomes (LC3) and lysosomes (LAMP1). (B) Quantification of LC3-LAMP1 colocalization. Data are given as mean ±, LC3

, SEM. *, p<0.05 versus control condition

, Figure 5 Analysis of lysosomal alterations. (A) Fluorescence images of RAW264

, macrophages exposed to 10 µg/ml particles for 6 h. Cells were incubated with acridine orange dye. Scale bar: 5 µm, Data are given as mean ± SEM. *, p<0.05 versus control condition

, Figure 6 Quantification of SNAPIN expression. (A) Representative western blot images of SNAPIN in RAW 264.7 macrophages exposed to 50 µg/mL of particles for 6 h. ACTB was used as a loading control. (B) Quantification of protein expression levels for SNAPIN, Data are given as mean ± SEM. *: p<0.05 versus control condition

S. Figure and . Cytoskeleton, Confocal images of RAW264.7 macrophages exposed to 10 µg/ml particles for 6 h. Cells were stained with the anti-TUBA/?-tubulin (Panel A) or actin (Panel B) antibody. Scale bar: 5 µm

S. Figure, Evaluation of lysosomal number. (A) Representative western blot images of LAMP1 and LAMP2 in RAW 264

, Actin was used as a loading control Quantification of protein expression levels for LAMP1 (B), or LAMP2 (C) Data are given as mean ± SEM. *, p<0.05 versus control condition