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Abstract— Online nuclear counting represents a challenge due 

to the stochastic nature of radioactivity. The count data have to 

be filtered in order to provide a precise and accurate estimation 

of the count rate, this with a response time compatible with the 

application in view. 

An innovative filter is presented in this paper addressing this 

issue. It is a nonlinear filter based on a Centered Skellam Test 

(CST) giving a local maximum likelihood estimation of the signal 

based on a Poisson distribution assumption. This nonlinear 

approach allows to smooth the counting signal while maintaining 

a fast response when brutal change activity occur. The filter has 

been improved by the implementation of a Brown’s double 

Exponential Smoothing (BES). 

The filter has been validated and compared to other state of 

the art smoothing filters. The CST-BES filter shows a significant 

improvement compared to all tested smoothing filters.  

 

Index Terms— Nuclear, Measurement, Filter, Signal 

Processing. 

I. INTRODUCTION 

UCLEAR counting signal could be considered as a time-

dependent random variable 𝑥𝑡 taking its value into a 

Poisson distribution 𝒫 with a parameter 𝜆𝑡  (see Eq. 1) [1]. The 

expected count number 𝜆𝑡  has to be estimated at each time 𝑡. 
 

𝑥𝑡~𝒫(𝜆𝑡)                                                                                          (1) 
 

If the activity is constant ( 𝜆𝑡 = 𝛾0), the maximum 

likelihood estimation of 𝜆𝑡  is given by the average of the 

measured data 𝑥𝑡. In the case of time varying activity the 

count rate could be estimated by a Single Moving Average 

(SMA) or an Exponential Moving Average (EMA). The 

tradeoff between precision and response time is set by the 

preset time 𝜃 of the SMA estimate �̂�𝑆𝑀𝐴
𝑡  and the forgetting 

factor 𝛼 of the EMA estimates �̂�𝐸𝑀𝐴
𝑡  such as presented in Eq. 

2-3. 
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𝑡 = 𝛼𝑥𝑡 + (1 − 𝛼)�̂�𝐸𝑀𝐴

𝑡−1                                                        (3) 
 

These linear low-pass filters are commonly implemented 

into ratemeters [2-6]. Nonlinear filters are also in development 

since many years to address the issue of nuclear counting 

smoothing [7-10]. A hypothesis test is performed in order to 

determine where the activity is changing and then make a 

decision on the time constant to set into the moving average 

filter. For this purpose, it has been proven that the Centered 

Skellam Test (CST) is an efficient filter to detect changes into 

the Poisson counting [11-12]. By its simplicity, it could easily 

be implemented into embedded electronics assuming real time 

processing. 

 

The data are record in a buffer with a size  𝑀. The 

integration time constant 𝜃𝑡 is set following the result of the 

test as detailed in Eq. 4-5 where 𝐿 is the vector of results from 

the test and 𝑄 is the parameter of the filter. The hypothesis test 

carried on the Poisson statistics assumption and a property 

associated with the Skellam distribution. Further details are 

mentioned in [12]. 

 

𝐿 = arg𝑖 {|
∑ 𝑥𝑡𝑡
𝑡−𝜃𝑡−1

𝜃𝑡−1
−
∑ 𝑥𝑡𝑡
𝑡−𝑖

𝑖
| − 𝑄√

∑ 𝑥𝑡𝑡
𝑡−𝜃𝑡−1

(𝜃𝑡−1)2
+
∑ 𝑥𝑡𝑡
𝑡−𝑖

𝑖2

> 0}                                                              (4) 

𝜃𝑡 = 𝜃𝑡−1 − dim(𝐿) + 1                                                  (5) 

 

At the current time 𝑡, the count rate is estimated as presented 

in Eq. 6 by an SMA filter where 𝜃𝑡  is the time-dependent 

integration time. In the absence of detection, the value  

dim(𝐿) is equal to zero, and then the time constant 𝜃𝑡 is 

extended. When a change in 𝜆𝑡  is detected the value of 

dim(𝐿) provides an indication about the credibility of the 

detection, and then the time constant 𝜃𝑡 is reduced. 
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�̂�𝐶𝑆𝑇
𝑡 =

1

𝜃𝑡
∑ 𝑥𝑡
𝑡

𝑡−𝜃𝑡

                                                                          (6) 

 

It has been proven in [12] that the CST estimates the 

counting signal with a better performance compared to SMA 

or EMA filters at count rate above 1 cps. An improvement is 

considered in this new work by the adding of recursive 

smoothing on the CST output estimates. The method is details 

on next section and the filter will be benchmark with other 

filters in order to highlight its advantages and limitations. 

II. METHOD 

 

Based on the original CST filter presented and pre-validated in 

[12], some optimizations are now presented in this chapter. 

Two figures of merits  𝐹𝑂𝑀1 and  𝐹𝑂𝑀2 are used as 

performance indicators. 

 

The first one 𝐹𝑂𝑀1(�̂�𝑋/�̂�𝑌) indicated the behavior of the filter 

X in comparison with the filter Y when a brutal change into the 

signal intensity occurs.  It is minimized when the precision of 

the measurement 𝑃(�̂�𝑋) and the response times  to brutal 

change 𝜏𝑖(�̂�𝑋) and 𝜏𝑑(�̂�𝑋) are the lowest (see Eq. 8). The 

relative standard deviation 𝑃(�̂�𝑋) is defined as the ratio 

between the observed standard deviation 𝜎(�̂�𝑋) and the 

empirical mean �̂�𝑋
̅̅ ̅ of the output signal during a constant 

activity such as:  𝜆𝑡 = 𝛾0 (see Eq. 7). The response time to an 

increase step  𝜏𝑖(�̂�𝑋)  and to a decrease step 𝜏𝑑(�̂�𝑋) are 

defined as times required to achieve the final value  𝜆𝑡 =
𝛾1 starting from the original count rate value 𝜆𝑡 = 𝛾0 (details 

on their calculation are mentioned in [12]). The value of 𝛾1 is 

set as a function of the Signal to Noise Ratio SNR such 

as: 𝛾1 = 𝛾0 + 𝑆𝑁𝑅 √𝛾0. 

 

𝑃(�̂�𝑋) =
𝜎(�̂�𝑋)

�̂�𝑋
̅̅ ̅

                                                                                                (7) 

 

𝐹𝑂𝑀1(�̂�𝑋/�̂�𝑌) =
𝑃(�̂�𝑋) ( 𝜏𝑖(�̂�𝑋) + 𝜏𝑑(�̂�𝑋))

𝑃(�̂�𝑌) ( 𝜏𝑖(�̂�𝑌) + 𝜏𝑑(�̂�𝑌))
                            (8) 

 

The second figure of merit 𝐹𝑂𝑀2(�̂�𝑋/�̂�𝑌)  has been built in 

order to account for the accuracy of the filter output with 

regards to the trend phenomenon. The accuracy is defined as 

the relative error of the output estimates compared to the 

expected value which following a trend such as: 𝜆𝑡 = 𝛾0 + 𝐶𝑡 
where 𝐶 is the slope of the trend. 

 

𝐴(�̂�𝑋) =
|�̂�𝑋 − 𝜆

𝑡|

𝜆𝑡
                                                                                   (9) 

 

𝐹𝑂𝑀2(�̂�𝑋/�̂�𝑌) =
𝑃(�̂�𝑋)𝐴(�̂�𝑋)

𝑃(�̂�𝑌)𝐴(�̂�𝑌)
                                                   (10) 

 

A FOM value equal or above to 1 means that the filter X gives 

no significant gain in comparison to the referenced filter Y. A 

FOM below 1 quantifies the improvement ensured by the 

filter X. 

A. Optimization of the original CST filter 

 

An implementation of the CST filter with an infinite buffer 

size is considered here, to get rid of any memory limitations. It 

has been shown in previews works [12] that the parameter 𝑄 

of the CST filter found its optimal value between 1 and 2. A 

more accurate estimation has been calculated and presented 

into the Fig. 1. A value of 1.6 seems to give optimal 

performance whatever the activity characteristics are. This 

value will be considered in the following of the study. 

 

 
Fig. 1.  Estimation of the 𝐹𝑂𝑀2 as a function of the CST parameter 𝑄 

 

The distribution of the integration time constant 𝜃𝑡  for 

different activity magnitudes is now studied. The Fig. 2 shows 

that the time constant is comprised between 1 and 150 with a 

mean value equal to 47. We can deduce that the buffer size of 

the system does not need to be higher than 200 to ensure a 

convenient operation of the filter. A buffer size equal to 200 

will therefore be considered in this study. 

 

 
Fig. 2.  Distribution of the value of the time constant 𝜃𝑡 for different activity 

magnitudes 
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B. The exponential smoothing 

 

The output signal provided by CST filtering cannot be 

described by a determined distribution. The data have then to 

be processed by implementing a technique for smoothing this 

indeterminate series containing a potential trend. The Brown’s 

double Exponential Smoothing (BES) is largely used in 

economics, and allows forecasting futures values and then 

anticipating a trend [13-14]. This approach has been chosen 

since it is a simple and then compatible with real time and 

embedded requirements of ratemeter. The value of the trend is 

estimated by the difference between a simple exponential 

smoothing �̂�𝐸𝑀𝐴
𝑡  and a double exponential smoothing �̂�𝐷𝐸𝑀𝐴

𝑡  

as presented in the regressive formulae Eq. 12-13.  The time 

constant of exponential smoothing 𝛼𝑡 is set with regards to the 

value of the CST time constant 𝜃𝑡 as presented in the Eq. 11, 

where 𝛽 is the parameter of the exponential smoothing part. 

Thus, the time constants of the final filter will be linked 

together within the same meaning. 

 

𝛼𝑡 = [1 − exp (−
1

𝛽(𝜃𝑡−1)
)]                                                      (11) 

 

�̂�𝐸𝑀𝐴
𝑡 = 𝛼𝑡�̂�𝐶𝑆𝑇

𝑡 + (1 − 𝛼𝑡)�̂�𝐶𝑆𝑇
𝑡−1                                               (12) 

  

�̂�𝐷𝐸𝑀𝐴
𝑡 = 𝛼𝑡�̂�𝐸𝑀𝐴

𝑡 + (1 − 𝛼𝑡)�̂�𝐸𝑀𝐴
𝑡−1                                          (13) 

 

The BES estimate at the current time 𝑡 is given by the 

following formula: 

  

�̂�𝐵𝐸𝑆
𝑡 = 2�̂�𝐸𝑀𝐴

𝑡 − �̂�𝐷𝐸𝑀𝐴
𝑡                                                              (14) 

 

This estimate allows a nonbiased smoothing of the signal for 

constant or soft slope. When a brutal change and a hard trend 

slope occur, a lag time and then a lack of accuracy steel 

appear. In order to process in a better way the signal, an 

alternative estimation will be done when significant changes 

are detected. A Moving Average Convergence Divergence 

𝑀𝐴𝐶𝐷𝑡 indicator is defined as the difference between the 

EMA and DEMA estimates. The relative trending indicator 

𝜌𝑡  is adapted to our problematics by a specific normalization 

as presented in Eq. 15. 

 

𝜌𝑡 =
�̂�𝐸𝑀𝐴
𝑡 − �̂�𝐷𝐸𝑀𝐴

𝑡

√�̂�𝐷𝐸𝑀𝐴
𝑡

                                                               (15) 

 

The indicator 𝜌𝑡 is used to detect the presence of a trend into 

the signal with regards to a threshold value κ. The final 

estimation �̂�𝐶𝑆𝑇∗
𝑡  is calculated as presented in Eq. 15. If 𝜃𝑡 

exceeds the threshold κ, the CST output is directly corrected 

by adding the trending correction. A gain in accuracy and 

response time is attempted by the lag time reduction.  If 𝜃𝑡 is 

under the threshold κ, the BES estimate is applied ensuring a 

gain in precision. 

 

{
 

 �̂�𝐶𝑆𝑇∗
𝑡 = �̂�𝐶𝑆𝑇

𝑡 + 𝜌𝑡√�̂�𝐷𝐸𝑀𝐴
𝑡            ∀𝜌𝑡 ≥ κ

�̂�𝐶𝑆𝑇∗
𝑡 = �̂�𝐸𝑀𝐴

𝑡 + 𝜌𝑡√�̂�𝐷𝐸𝑀𝐴
𝑡            ∀𝜌𝑡 < κ

               (15) 

 

Fig. 4 shows the probability distribution of the 𝜌𝑡 indicator in 

the case of constant activity and in the case of a trend 

contained into the signal. The threshold κ has to be chosen to 

detect a trend with a maximum of true detections and a 

minimum of false detections. From the Fig. 4. a value of 0.3 

has been chosen as optimal. 

 

 
Fig. 4.  Probability distribution of the 𝜌𝑡 indicator in the case of constant 
activity and in the case of a trend contained into the signal. 

 

C. Optimization of the β parameter 

 

The parameter 𝛽 used into the exponential smoothers has also 

to be optimized.  The figure of merits 𝐹𝑂𝑀1 and 𝐹𝑂𝑀2 are 

estimated as a function of the smoother parameter 𝛽 for 

different level of activities 𝛾0, relative slope 𝐶 and signal to 

noise 𝑆𝑁𝑅 values. Some of these curves are reported in Fig. 6-

9 and a value equal to 1.5 can be considered as an optimal 

value maintaining a compromise between accuracy and 

precision. 

 

 

 
Fig. 6.  Figures of merit obtained as a function of the parameter 𝛽 for a base 

line count rate 𝛾0 = 10 𝑐𝑝𝑠 and for different value of the slope 𝐶. 
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Fig. 7.  Figures of merit obtained as a function of the parameter 𝛽 for a base 

line count rate 𝛾0 = 100 𝑐𝑝𝑠 and for different value of the slope 𝐶. 

 

 
Fig. 8.  Figures of merit obtained as a function of the parameter 𝛽 for a base 

line count rate 𝛾0 = 10 𝑐𝑝𝑠 and for different value of the SNR value. 

 

 
Fig. 9.  Figures of merit obtained as a function of the parameter 𝛽 for a base 

line count rate 𝛾0 = 100 𝑐𝑝𝑠 and for different value of the SNR value. 

 

III. RESULTS 

 

The filter CST* has been defined in the previous chapter and 

is now compared with some other smoothing filters 

implemented for nuclear counting. The studied filters are 

listed below: 

● The SMA filter described in Eq. 2 with a time 

constant 𝜃 = 100. 

● The EMA filter described in Eq. 3 with a time 

constant 𝛼 = 0.7. 

● The CST filter described in [12] and I. with a 

parameter 𝑄 = 1.6. 

 

The figure of merit relatively to one obtained by SMA filter 

has been calculated as a function of the baseline signal 

amplitude 𝛾0. SMA is chosen as the reference filter because of 

its usual implementation in ratemeters. Fig. 10 shows the 

values of 𝐹𝑂𝑀1(�̂�𝑋/�̂�𝑆𝑀𝐴) for a brutal change in amplitude 

corresponding to a 𝑆𝑁𝑅 = 10. The CST filters exhibits better 

performances than SMA and EMA filters as already 

demonstrated in [12]. The CST* allows an improvement to be 

made in comparison to the original version of the CST filter 

when the activity falls bellow 10 cps. This gain at low count 

rate is also observed at lower SNR as seen in Fig.11 where the 

CST* maintains a lower FOM while CST has poorer 

performances than the EMA in this case. 

 

 
Fig. 10.  Figures of merit obtained as a function of the baseline count rate for a 

brutal jump corresponding to a SNR equal to 10. 

 

 
Fig. 11.  Figures of merit obtained as a function of the baseline count rate for a 

brutal jump corresponding to a SNR equal to 5. 
 

Fig. 12 shows the values of 𝐹𝑂𝑀2(�̂�𝑋/�̂�𝑆𝑀𝐴) for a signal 

containing a trend with a slope C=0.2 and 0.3. As already seen 

with 𝐹𝑂𝑀1, the performance below 10 cps are improved 

without any discrepancy observed at higher count rate.  
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Fig. 12.  Figures of merit obtained as a function of the baseline count rate for a 
trend with a slope C equal to 0.2. 

 

 
Fig. 13.  Figures of merit obtained as a function of the baseline count rate for a 

trend with a slope C equal to 0.3. 

 

The CST* version allows to process the counting signal on a 

larger range of count rate levels. The superiority of nonlinear 

filters as the CST* compared to traditional linear filtering is 

confirmed by those results. 

 

As an illustration, temporal profiles are presented in the 

Fig. 14-16  in the case of very low count rates. In Fig. 13, the 

CST* exhibits a faster response to the increase step while 

smoothing the signal with a better precision. In Fig. 14, the 

trend is followed by the CST* without any lag times giving 

performance closed to CST ones. Finally a constant count rate 

is presented in the Fig. 15. The CST* provides a more precise 

estimate than the CST and exhibits a behavior closer to the 

highly destructive SMA low-pass filter. 

 

 

Fig. 14.  Example of temporal profiles obtained by SMA, EMA, CST and 

CST* for a brutal change set of with an SNR equal to 5 and a baseline count 
rate of 0.1 

 

 
Fig. 15.  Example of temporal profiles obtained by SMA, EMA, CST and 

CST* for a trend set of with an slope equal to 0.15 and a baseline count rate of 

0.1 

 

 

 
Fig. 16.  Example of temporal profiles obtained by SMA, EMA, CST and 

CST* for a constant count rate of 0.1 
 

IV. DISCUSSION 

 

The nonlinear CST* filter has recently been tested for 

spectroscopy applications. It is applied to each energy channel 

j of a temporal spectrum 𝜑𝑗
𝑡 as seen in Eq. 16 where 𝜓𝑗

𝑡  is the 

output smoothed spectrum.   

 

∀𝑗 ∈ [1, 𝑛𝑗] , 𝜓𝑗
𝑡 = 𝐶𝑆𝑇∗(𝜑𝑗

𝑡)                                           (16) 

 

Fig. 16 shows a row temporal gamma spectrum obtained 

during a clad failure experiment conducted at the OSIRIS 

testing reactor where an elementary integration time equal to 

5 s is considered [15-16]. The large fluctuations induced 

difficulties for the fitting of the Gaussian peak required to 

quantify isotope activities. Fig. 15 shows the same temporal 

gamma spectrum after being processed by the CST* filter. The 

time preserving smoothing ensured by the CST* filter makes 

the analysis of the temporal spectrum easier. 
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Fig. 14.  Row temporal spectrum measured at the OSIRIS reactor during an 

experimental clad failure. 

 

 
Fig. 15.  Filtered temporal spectrum measured at the OSIRIS reactor during an 
experimental clad failure. 

 

The filter will also be implemented as a critical building block 

into current R&D projects such as an innovative compensation 

system addressing neutron detection [17-18] and into a system 

allowing moving sources to be detected by a sensor network 

[19-20]. The stability of the CST* filter with regards to drifts 

in the Poisson assumption (pile-up, correlation) will be studied 

in future works. 

 

V. CONCLUSION 

The filter has been optimized to process the counting signal 

using a filtering part based on a Skellam centered hypothesis 

test with a law assumption and a smoothing part using a 

Brown’s double exponential recursive smoothing. The version 

of the filter including the exponential smoothing part has 

improved the performance (response time vs. precision 

tradeoff) at very low count rate (below 1 cps). 

 

The figures of merits obtained by the implementation of the 

filter are dramatically better than conventional single and 

exponential moving average smoothers over a very large range 

of count rates. 

 

This approach provides an efficient smoother ensuring an 

accurate and precise estimation of the count rate whatever the 

trend of the signal or any brutal change occurring. It is well 

suited for embedded and real time requirements associated 

with nuclear instruments. 
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