Contactless automated manipulation of mesoscale objects using opto-fluidic actuation and visual servoing
Abstract
This work describes an automated opto-fluidic system for parallel non-contact manipulation of microcomponents. The strong dynamics of laser-driven thermocapillary flows were used to drag microcomponents at high speeds. High-speed flows allowed to manipulate micro-objects in a parallel manner only using a single laser and a mirror scanner. An automated process was implemented using visual servoing with a high-speed camera in order to achieve accurately parallel manipulation. Automated manipulation of two glass beads of 30 up to 300 $\mu$m in diameter moving in parallel at speeds in the range of mm/s was demonstrated.